网络压缩论文整理(network compression)
1. Parameter pruning and sharing
1.1 Quantization and Binarization
Compressing deep convolutional networks using vector quantization
Binaryconnect: Training deep neural networks with binary weights during propagations
Binarynet: Training deep neural net- works with weights and activations constrained to +1 or -1
Xnor-net: Imagenet classification using binary convolutional neural networks
Deep neural networks are robust to weight binarization and other non- linear distortions
1.2 Pruning and Sharing
Comparing biases for minimal network construction with back-propagation
Second order derivatives for network pruning: Optimal brain surgeon
Learning both weights and connections for efficient neural networks
1.3 Designing Structural Matrix
2. Low rank factorization and sparsity
Exploiting linear structure within convolutional networks for efficient evaluation
Speeding up convolutional neural networks with low rank expansions
Speeding-up convolutional neural networks using fine-tuned cp- decomposition
Low-rank matrix factorization for deep neural network training with high-dimensional output targets
3. Transferred/compact convolution filters
Understanding and improving convolutional neural networks via concatenated rectified linear units
Inception-v4, inception-resnet and the impact of residual connections on learning
SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4. Knowledge distillation
5. Other
Outrageously large neural networks: The sparsely- gated mixture-of-experts layer
Deep dynamic neural networks for multimodal gesture segmentation and recognition
Deep pyramidal residual networks with separated stochastic depth
6. Survey
网络压缩论文整理(network compression)的更多相关文章
- 网络压缩论文集(network compression)
Convolutional Neural Networks ImageNet Models Architecture Design Activation Functions Visualization ...
- 论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding
论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Prunin ...
- (转) GAN论文整理
本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263 ...
- plain framework 1 1.0.3更新 优化编译部分、网络压缩和加密
有些东西总是姗姗来迟,就好比这新年的钟声,我们盼望着新年同时也不太旧的一年过去.每当这个时候,我们都会总结一下在过去的一年中我们收获了什么,再计划新的一年我们要实现什么.PF并不是一个十分优秀的框架, ...
- Microsoft Message Analyzer (微软消息分析器,“网络抓包工具 - Network Monitor”的替代品)官方正式版现已发布
来自官方日志的喜悦 被誉为全新开始的消息分析器时代,由MMA为您开启,博客原文写的很激动,大家可以点击这里浏览:http://blogs.technet.com/b/messageanalyzer/a ...
- Neutron 理解 (1): Neutron 所实现的虚拟化网络 [How Netruon Virtualizes Network]
学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...
- 专注于HTTP的高性能高易用性网络库:Fslib.network库
博客列表页:http://blog.fishlee.net/tag/fslib-network/ 原创FSLib.Network库(目前专注于HTTP的高性能高易用性网络库) FSLib.Networ ...
- Microsoft Message Analyzer (微软消息分析器,“网络抓包工具 - Network Monitor”的替代品)官方正式版现已发布
Microsoft Message Analyzer (微软消息分析器,“网络抓包工具 - Network Monitor”的替代品)官方正式版现已发布 来自官方日志的喜悦 被誉为全新开始的消息分析器 ...
- 存储区域网络(Storage Area Network,简称SAN)
存储区域网络(Storage Area Network,简称SAN)采用网状通道(Fibre Channel ,简称FC,区别与Fiber Channel光纤通道)技术,通过FC交换机连接存储阵列和服 ...
随机推荐
- python center() 函数
center Python center() 返回一个原字符串居中,并使用空格填充至长度 width 的新字符串.默认填充字符为空格. 语法 center()方法语法: str.center(widt ...
- linux报错 find: missing argument to `-exec'
在linux下使用find命令时,报错:find: missing argument to `-exec' 具体执行命令为: find /u03 -name server.xml -exec grep ...
- Mac下PHP7.1+Nginx安装和配置
https://blog.csdn.net/haiyanggeng/article/details/79186982 PHP:7.1.13Nginx:1.12.2 1. 安装PHP# 添加源brew ...
- 【转】 Oracle 用户权限管理方法
sys;//系统管理员,拥有最高权限 system;//本地管理员,次高权限 scott;//普通用户,密码默认为tiger,默认未解锁 sys;//系统管理员,拥有最高权限 system;//本地管 ...
- [LeetCode] 88. Merge Sorted Array_Easy tag: Two Pointers
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array. Note: T ...
- unittest之suite测试集(测试套件)
suite 这个表示测试集,不要放在class内,否则会提示"没有这样的测试方法在类里面 ",我觉得它唯一的好处就是调试的时候可以单独调试某个class而已,我一般不用它,调试时可 ...
- jQ live用法
我们给元素绑定单击事件.用得最多的都是$("#id").click(function(){}); 但我们动态添加的元素.这样绑定是不行的.必须借助live $("#id ...
- linux命令:linux文件处理命令
命令格式 : 命令 [-选项] [参数] 例:ls -la /etc 说明:1)个别命令使用不遵循此格式,[]代表可选 2)当有多个选项时,可以写在一起 3)-a等于 --all,调用简化选项用 ...
- LoadRunner11支持的浏览器小结-Loadrunner11打不开IE浏览器的问题
http://www.cnblogs.com/qmfsun/p/4807237.html
- python getctime() 文件最后一次的改变时间
Return the metadata change time of a file,reported by os.stat() def mm(): file_name=r'c:\temp.txt' f ...