gcd(欧几里得算法辗转相除法):

gcd ( a , b )= d ;

即 d = gcd ( a , b ) = gcd ( b , a mod b );以此式进行递归即可。

之前一直愚蠢地以为辗转相除法输进去时 a 要大于 b ,现在发现事实上如果 a 小于 b,那第一次就会先交换 a 与 b。

 #include<stdio.h>
#define ll long long ll gcd(ll a,ll b){
return b==?a:gcd(b,a%b);
} int main(){
ll a,b;
while(scanf("%lld%lld",&a,&b)!=EOF){
printf("%lld\n",gcd(a,b));
// printf("%lld\n",a>b?gcd(a,b):gcd(b,a));
}
return ;
}

在原基础上改成循环之后的GCD:

 ll gcd(ll a,ll b){
for(;a>&&b>;a>b?a%=b:b%=a);
return a+b;
}

这个代码是针对非负数范围的,但除此之外我还纠结了很久,在非负数的范围内(long long内)与普通递归的gcd对拍并没有发现问题,一直做题的时候也没有发现有什么问题,但是刷到一题UVA10325,经测试数据中没有给0或负数,但是用这个WA用递归版的AC,并不知道为什么。

所以……还是库函数/递归保平安吧

拓展欧几里得:

当 gcd ( a , b )= d 时,求绝对值和最小的 x , y 使得 x * a + y * b = d ;

d = gcd ( a , b ) = gcd ( b , a mod b );

设:

x1 * a + y1 * b = d ;        ①

x2 * b + y2 * ( a mod b ) = d ;   ②

因为 a mod b = a - ( a / b )* b;  ③(除法为整除)

将③代入①整理得:

y2 * a + ( x2 - ( a / b ) * y2 ) * b = d; ④

由①和④整理得:

x1 = y2 ;

y1 = x2 - ( a / b ) * y2;

将此结论代入递归函数既得。

 #include<stdio.h>
#define ll long long void gcd(ll a,ll b,ll& d,ll& x,ll& y){
if(!b){d=a;x=;y=;}
else {gcd(b,a%b,d,y,x);y-=x*(a/b);}
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
gcd(a,b,d,x,y);
printf("%lld*%lld+%lld*%lld=%lld\n",a,x,b,y,d);
}
return ;
}

拓展欧几里得求逆元:

当 a 与 b 互素时有 gcd ( a , b ) = 1 ;

即得: a * x + b * y = 1;

a * x ≡ 1 ( mod b );

由于 a 与 b 互素,同余式两边可以同除 a ,得:

1 * x ≡ 1 / a (mod b);

因此 x 是 a mod b 的逆元;

递归方法计算:

 #include<stdio.h>
#define ll long long ll gcd(ll a,ll b,ll &d,ll& x,ll& y){
if(!b){
d=a;
x=;
y=;
return x;
}
else{
gcd(b,a%b,d,y,x);
y-=x*(a/b);
}
return x;
} int main(){
ll a,b,d,x,y;
while(scanf("%lld%lld",&a,&b)!=EOF){
x=gcd(a,b,d,x,y);
printf("a:%lld->x:%lld\n",a,x);
// printf("a:%lld->x:%lld\nb:%lld->y:%lld\n",a,x,b,y);
}
return ;
}

循环方法计算:

 #include<stdio.h>

 int main(){
int a,b;
while(scanf("%d%d",&a,&b)!=EOF){
int x=,y=,t; {
if(a!=&&b!=){
int b0=b,q;
while(a>){
q=a/b0;
t=b0;b0=a%b0;a=t;
t=y;y=x-q*y;x=t;
}
if(x<)x+=b;
}
} printf("a:%d->x:%d\n",a,x);
}
return ;
}
 ll gcd(ll a,ll b){
if(a!=&&b!=){
int b0=b,q,t,x=,y=;
while(a>){
q=a/b0;
t=b0;b0=a%b0;a=t;
t=y;y=x-q*y;x=t;
}
if(x<)x+=b;
}
return x;
}

gcd模板(欧几里得与扩展欧几里得、拓展欧几里得求逆元)的更多相关文章

  1. HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)

    设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...

  2. poj 1061 青蛙的约会 拓展欧几里得模板

    // poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...

  3. hdu_1576A/B(扩展欧几里得求逆元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others)    Me ...

  4. ACM数论-欧几里得与拓展欧几里得

    ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...

  5. [POJ2115]C Looooops 拓展欧几里得

    原题入口 这个题要找到本身的模型就行了 a+c*x=b(mod 2k) ->  c*x+2k*y=b-a 求这个方程对于x,y有没有整数解. 这个只要学过拓展欧几里得(好像有的叫扩展欧几里德QA ...

  6. poj 1061 青蛙的约会+拓展欧几里得+题解

    青蛙的约会+拓展欧几里得+题解 纵有疾风起 题意 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出 ...

  7. NOIP2012拓展欧几里得

    拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...

  8. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  9. POJ1061 青蛙的约会-拓展欧几里得

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

随机推荐

  1. arcgis for silverlight 地图放大到某个点或者几何对象

    http://blog.csdn.net/xuan444150/article/details/7727866   分类: silverlight王国 GIS王国 2012-07-09 08:50 1 ...

  2. JDK1.5 新特性

    1:自动装箱与拆箱 自动装箱:每当需要一种类型的对象时,这种基本类型就自动地封装到与它相同类型的包装中. 自动拆箱:每当需要一个值时,被装箱对象中的值就被自动地提取出来,没必要再去调用intValue ...

  3. Johnny Solving CodeForces - 1103C (构造,图论)

    大意: 无向图, 无重边自环, 每个点度数>=3, 要求完成下面任意一个任务 找一条结点数不少于n/k的简单路径 找k个简单环, 每个环结点数小于n/k, 且不为3的倍数, 且每个环有一个特殊点 ...

  4. Ant Man CodeForces - 704B (图论,贪心)

    大意: 给N个点,起点S终点T,每个点有X,A,B,C,D,根据I和J的X坐标可得I到J的距离计算公式 |xi - xj| + ci + bj seconds if j< i |xi - xj| ...

  5. ural Ambitious Experiment 树状数组

    During several decades, scientists from planet Nibiru are working to create an engine that would all ...

  6. thinkphp数组处理

    1.array_unique() 移除数组中的重复的值,并返回结果数组.当几个数组元素的值相等时,只保留第一个元素,其他的元素被删除,对每个值只保留第一个遇到的键名,接着忽略所有后面的键名.返回的数组 ...

  7. 解析XML文档大致流程以及相关方法

    ---恢复内容开始--- 使用dom解析XML文档的大致流程(要导入dom4j)1:创建SAXReader2:使用SAXReader读取xml文档,并生成对应的Document对象,该对象保存了该文档 ...

  8. httpclient RequestConfig类

    RequestConfig类解析 这个类位于org.apache.he.http.client.config包下,主要用于获取和配置一些外部的网络环境,它下面有一个嵌套类RequestConfig.B ...

  9. 浅谈Obejct.assign

    Object.assign属于浅拷贝 Object.assign只能拷贝:可被枚举的属性,自有属性,string或者Symbol类型是可以被直接分配的 var ab={ name:"没有被覆 ...

  10. IScroll的诞生和缺点

    转自http://lhdst-163-com.iteye.com/blog/1239784 iscroll.js是Matteo Spinelli开发的一个js文件,使用原生js编写,不依赖与任何js框 ...