1. EM算法-数学基础

2. EM算法-原理详解

3. EM算法-高斯混合模型GMM

4. EM算法-高斯混合模型GMM详细代码实现

5. EM算法-高斯混合模型GMM+Lasso

1. 凸函数

通常在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的。

定义1:集合\(R_c\subset E^n\)是凸集,如果对每对点\(\textbf{x}_1,\textbf{x}_2\subset R_c\),每个实数\(\alpha,0<\alpha<1\),点\(\textbf{x}\in R_c\)

\[
\textbf{x}=\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2
\]

定义2:我们称定义在凸集\(R_c\)上的函数\(f(x)\)为凸的,如果对每对\(\textbf{x}_1,\textbf{x}_2 \in R_c\)与每个实数\(\alpha ,0<\alpha<1\),则满足不等式

\[
f[\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2]\leq\alpha f(\textbf{x}_1)+(1-\alpha)f(\textbf{x}_2)
\]

如果\(\textbf{x}_1\neq\textbf{x}_2\),则f(x)是严格凸的。

\[
f[\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2]<\alpha f(\textbf{x}_1)+(1-\alpha)f(\textbf{x}_2)
\]

2. Jensen不等式

定义1:若\(f(x)\)为区间\(X\)上的凸函数,则\(\forall n \in \mathbb N, n \ge 1,\), 若\(\forall i \in \mathbb N, 1 \le i \le n, x_i \in X, \lambda_i \in \mathbb R,\),且\(\sum^n_{i=1}\lambda_i=1\), 则:

\[
f(\sum_{i=1}^{n} \lambda_i x_i) \le \sum_{i=1}^{n} \lambda_i f(x_i)
\]

推论1:若\(f(x)\)为区间\(R\)上的凸函数,\(g(x): R \rightarrow R\)为一任意函数,\(X\)为一取值范围有限的离散变量,\(E [f \left ( g(X) \right ) ]\)与\(E[g(X)]\)都存在,则:

\[
E [f \left ( g(X) \right ) ] \ge f \left (E[g(X)] \right )
\]

3. 极大似然估计

极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计。

一般说来,事件\(A\)发生的概率与某一未知参数\(\theta\)有关,\(\theta\)的取值不同,则事件\(A\)发生的概率\(P(A|\theta)\)也不同,当我们在一次试验中事件\(A\)发生了,则认为此时的\(\theta\)值应是\(t\)的一切可能取值中使\(P(A|\theta)\)达到最大的那一个,极大似然估计法就是要选取这样的\(t\)值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。

直观的例子:
设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。

1. EM算法-数学基础的更多相关文章

  1. 5. EM算法-高斯混合模型GMM+Lasso

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...

  2. 4. EM算法-高斯混合模型GMM详细代码实现

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...

  3. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

  4. 2. EM算法-原理详解

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...

  5. 机器学习——EM算法

    1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法 ...

  6. EM算法(Expectation Maximization Algorithm)

    EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...

  7. 学习笔记——EM算法

    EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求 ...

  8. K-Means聚类和EM算法复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 k-means算法是一种得到最广泛使用的聚类算法. 它是将各个聚类子集内 ...

  9. EM算法总结

    EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用 ...

随机推荐

  1. NBUT [1475] Bachelor

    [1475] Bachelor http://acm.nbut.cn:8081/Problem/view.xhtml?id=1475 时间限制: 1000 ms 内存限制: 65535 K 问题描述 ...

  2. POJ 2391 Ombrophobic Bovines (Floyd + Dinic +二分)

    Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11651   Accepted: 2 ...

  3. TensorFlow Google大会总结

    一.概述 介绍TPU,需要使用XLA编译,否则没有做内部优化,无法达到加速的效果: TPU相关的性能分析器: 二.新版本的输入库 之前TensorFlow的输入方式: feed_dict: 太过于低效 ...

  4. Android文件的读写

    Android的文件读写与JavaSE的文件读写相同,都是使用IO流.而且Android使用的正是JavaSE的IO流,下面我们通过一个练习来学习Android的文件读写. 1.创建一个Android ...

  5. 【HTML】如何判断当前浏览器是否是IE

    HTML里: HTML代码中,在编写网页代码时,各种浏览器的兼容性是个必须考虑的问题,有些时候无法找到适合所有浏览器的写法,就只能写根据浏览器种类区别的代码,这时就要用到判断代码了.在HTML代码中, ...

  6. PHOTOSHOP中3D下拉菜单为灰色如何设置

    方法/步骤   安装好PS后,在测试3D功能时突然发不能用.如图,怎么办呢?   按“CTRL+K”打开,或者在编辑-首选项-性能-勾选“启用OpenGL绘图(D)”   在选项对话框中勾选“启用Op ...

  7. java中如何将byte[]里面的数据转换成16进制字符串

    原文链接: http://zhidao.baidu.com/link?url=RmLDjr4PtP_oUE5J2pKNZSvlHt1K7HcCh4-03Y7VkXYhJ0kawg01CtKHZc2uB ...

  8. apache提示没有设置 max-age or expires解决办法

    大家看到这个就应该知道只要设置 max-age or expires就行了.下面说的方法是在设置 apache下的方法: 产生要开启 代码如下 复制代码 LoadModule headers_modu ...

  9. Linux系统和工具集

    Linux系统和工具集 阿里源 http://mirrors.aliyun.com/ http://centos.ustc.edu.cn/ 第三方包管理器 不同的发行版使用不同的软件包管理器,Cent ...

  10. groupby elasticsearch

    GET usertag/usertag/_search { "query": { "match": { "tagname": "春 ...