数据规整

首先将评分数据从 ratings.dat 中读出到一个 DataFrame 里:

>>> import pandas as pd

In [2]: import pandas as pd

In [3]: df = pd.read_csv('2014-12-18.csv')

In [4]: df.head()
Out[4]:
user_id item_id behavior_type user_geohash item_category hour
0 100268421 284019855 1 95ridd7 1863 19
1 109802727 56489946 1 NaN 8291 10
2 109802727 56489946 1 NaN 8291 10
3 109802727 266907147 1 99ctk96 9117

 

>>> data = ratings.pivot(index='user_id',columns='movie_id',values='rating')

>>> data[:5]
movie_id  1   2   3   4   5   6 
user_id                                                                       
1          5 NaN NaN NaN NaN NaN ...
2        NaN NaN NaN NaN NaN NaN ...
3        NaN NaN NaN NaN NaN NaN ...
4        NaN NaN NaN NaN NaN NaN ...
5        NaN NaN NaN NaN NaN   2 ...
 

>>> check_size = 1000

>>> check = {}
>>> check_data = data.copy()#复制一份 data 用于检验,以免篡改原数据
>>> check_data = check_data.ix[check_data.count(axis=1)>200]#滤除评价数小于200的用户
>>> for user in np.random.permutation(check_data.index):
        movie = np.random.permutation(check_data.ix[user].dropna().index)[0]
        check[(user,movie)] = check_data.ix[user,movie]
        check_data.ix[user,movie] = np.nan
        check_size -= 1
        if not check_size:
            break
 
>>> corr = check_data.T.corr(min_periods=200)
>>> corr_clean = corr.dropna(how='all')
>>> corr_clean = corr_clean.dropna(axis=1,how='all')#删除全空的行和列
>>> check_ser = Series(check)#这里是被提取出来的 1000 个真实评分
>>> check_ser[:5]
(15593)     4
(23555)     3
(333363)    4
(362355)    5
(533605)    4
dtype: float64
 

参考:

Python 基于协同过滤的推荐

利用python的theano库刷kaggle mnist排行榜

协同过滤CF算法之入门的更多相关文章

  1. 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .

    ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...

  2. 【Machine Learning】Mahout基于协同过滤(CF)的用户推荐

    一.Mahout推荐算法简介 Mahout算法框架自带的推荐器有下面这些: l  GenericUserBasedRecommender:基于用户的推荐器,用户数量少时速度快: l  GenericI ...

  3. SparkMLlib—协同过滤推荐算法,电影推荐系统,物品喜好推荐

    SparkMLlib-协同过滤推荐算法,电影推荐系统,物品喜好推荐 一.协同过滤 1.1 显示vs隐式反馈 1.2 实例介绍 1.2.1 数据说明 评分数据说明(ratings.data) 用户信息( ...

  4. SimRank协同过滤推荐算法

    在协同过滤推荐算法总结中,我们讲到了用图模型做协同过滤的方法,包括SimRank系列算法和马尔科夫链系列算法.现在我们就对SimRank算法在推荐系统的应用做一个总结. 1. SimRank推荐算法的 ...

  5. 基于MapReduce的(用户、物品、内容)的协同过滤推荐算法

    1.基于用户的协同过滤推荐算法 利用相似度矩阵*评分矩阵得到推荐列表 已经推荐过的置零 2.基于物品的协同过滤推荐算法 3.基于内容的推荐 算法思想:给用户推荐和他们之前喜欢的物品在内容上相似的物品 ...

  6. 推荐系统算法学习(一)——协同过滤(CF) MF FM FFM

    https://blog.csdn.net/qq_23269761/article/details/81355383 1.协同过滤(CF)[基于内存的协同过滤] 优点:简单,可解释 缺点:在稀疏情况下 ...

  7. Spark ML协同过滤推荐算法

    一.简介 协同过滤算法[Collaborative Filtering Recommendation]算法是最经典.最常用的推荐算法.该算法通过分析用户兴趣,在用户群中找到指定用户的相似用户,综合这些 ...

  8. 协同过滤 CF & ALS 及在Spark上的实现

    使用Spark进行ALS编程的例子可以看:http://www.cnblogs.com/charlesblc/p/6165201.html ALS:alternating least squares ...

  9. 基于局部敏感哈希的协同过滤推荐算法之E^2LSH

    需要代码联系作者,不做义务咨询. 一.算法实现 基于p-stable分布,并以‘哈希技术分类’中的分层法为使用方法,就产生了E2LSH算法. E2LSH中的哈希函数定义如下: 其中,v为d维原始数据, ...

随机推荐

  1. 添加MyEclipse WebSphere Portal Server支持(一)

    [周年庆]MyEclipse个人授权 折扣低至冰点!立即开抢>> [MyEclipse最新版下载] 一.支持WebSphere Portal Server 本文档介绍了如何支持和开发 We ...

  2. 201621123010《Java程序设计》第11周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序BounceThread 1.1 BallR ...

  3. Python学习(006)-深浅拷贝及集合

     深浅拷贝 import copy husband=['xiaoxin',123,[200000,100000]] wife=husband.copy() #浅拷贝 wife[0]='xiaohong ...

  4. 高并发下linux ulimit优化

    系统性能一直是一个受关注的话题,如何通过最简单的设置来实现最有效的性能调优,如何在有限资源的条件下保证程序的运作,ulimit 是我们在处理这些问题时,经常使用的一种简单手段.ulimit 是一种 l ...

  5. node 相关

    1. 更新npm : npm install npm -g / cnpm install npm -g 2.安装cnpm npm install -g cnpm --registry=https:// ...

  6. JMeter中各种请求格式--aduocd的博客

    背景:1.在JMeter的HTTP请求的测试中,经常会使用到不同的请求格式.常用的格式如,json,form-data,x-www-form-urlencoded,multipart/form-dat ...

  7. 1.1.3 A+B for Input-Output Practice (III)

    A+B for Input-Output Practice (III) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...

  8. caffe编译问题-src/caffe/net.cpp:8:18: fatal error: hdf5.h: No such file or directory compilation terminated.

    错误描述 src/caffe/net.:: fatal error: hdf5.h: No such : recipe 操作过程 step1: 在Makefile.config文件更改INCLUDE_ ...

  9. Nuxt开发搭建博客系统

    nuxt.js第三方插件的使用?路由的配置pages目录自动生成路由layoutsdefault.vueerror.vueVuex的使用权限篇Mysqladvice nuxt.js 追求完美,相信大家 ...

  10. HTTPS网站的内幕

    什么是HTTPS网站? HTTPS可以理解为HTTP+TLS,HTTP是互联网中使用最为广泛的协议,目前大部分的WEB应用和网站都是使用HTTP协议传输. 那网站为什么要实现HTTPS? 一言概之,为 ...