转载于acm之家http://www.acmerblog.com/hdu-1003-Max-Sum-1258.html

Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 242353    Accepted Submission(s): 57218


Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 

Sample Output

Case 1:
14 1 4

Case 2:
7 1 6

题意:求最大连续子序列的和以及这个和所在的区间

思路:初识dp,大问题是求出总序列的最大和,而每个数都有加到前面作为前面已经加好的和的增量和自己独立成为一个“最大和”的选择,在这两个选择中的最大和就是局部的最大和,而保存好第一个最大和,将整个序列的所有局部最大和都求解出来,就能得到全列的最大和

代码如下:

#include<stdio.h>
int main()
{
int i,ca=1,t,s,e,n,x,now,before,max;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d",&now);
if(i==1)//初始化
{
max=before=now;//max保留之前算出来的最大和,before存储目前在读入数据前保留的和,now保留读入数据
x=s=e=1;//x用来暂时存储before保留的和的起始位置,当before>max时将赋在s位置,s,e保留最大和的start和end位置
}
else {
if(now>now+before)//如果之前存储的和加上现在的数据比现在的数据小,就把存储的和换成现在的数据,反之就说明数据在递增,可以直接加上
{
before=now;
x=i;//预存的位置要重置
}
else before+=now;
}
if(before>max)//跟之前算出来的最大和进行比较,如果大于,位置和数据就要重置
max=before,s=x,e=i;
}
printf("Case %d:\n%d %d %d\n",ca++,max,s,e);
if(t)printf("\n");
}
return 0;
}

hdu 1003 Max Sum (动态规划)的更多相关文章

  1. HDU 1003 Max Sum (动态规划 最大区间和)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  2. hdu 1003 Max Sum(动态规划)

    解题思路: 本题在给定的集合中找到最大的子集合[子集合:集合的元素的总和,是所有子集合中的最大解.] 结果输出: 最大的子集合的所有元素的和,子集合在集合中的范围区间. 依次对元素相加,存到一个 su ...

  3. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  4. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  5. hdu 1003 Max Sum (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)   ...

  6. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  7. hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行

    测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...

  8. HDU 1003 Max Sum

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. HDU 1003 Max Sum (动规)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

随机推荐

  1. uboot下的命令使用示例

    1.usb 可以使用此命令读取u盘里的内容,此命令加上相关参数可以有以下功能: 1.1usb start 在使用u盘之前必须启动此命令以初始化好fat文件系统环境,笔者的输出如下: jello # u ...

  2. 【第三十二章】 elk(3)- broker架构 + 引入logback

    实际中最好用的日志框架是logback,我们现在会直接使用logback通过tcp协议向logstash-shipper输入日志数据.在上一节的基础上修改!!! 一.代码 1.pom.xml 1 &l ...

  3. Unity3D学习笔记(十五):寻路系统

    动画生硬切换:animation.play();//极少使用,常用融合方法 动画融合淡入:animation.CrossFade(“Idle”, 0.2f);//0.2f为与前一动画的融合百分比为20 ...

  4. C# 实现简单的 Heap 堆(二叉堆)

    如题,C#  实现简单的二叉堆的 Push() 和 Pop(), 如有不足欢迎指正. 另外,在C#中使用 Heap 的相似功能可以考虑使用:Priority Queues,SortedDictiona ...

  5. Quartz.NET教程:(01) 使用Quartz

    使用调度器 (scheduler) 之前要先用 ISchedulerFactory 的一个实现来实例化调度器(scheduler).一旦调度器实例化完成,则它可以被启动.置于备用模式或者关闭.需要注意 ...

  6. 爱阅app --- 答复功能改进建议

    共有四组评论,接下来一一答复. 第一组: 希望增加的功能: 1.希望能够继续完善书签功能,增加逐条删除书签功能. 2.能够在爱阅内部打开APP中提供的网址,用户选择一款阅读APP,当然不想每看一本新的 ...

  7. Codeforces D - The Child and Zoo

    D - The Child and Zoo 思路: 并查集+贪心 每条边的权值可以用min(a[u],a[v])来表示,然后按边的权值从大到小排序 然后用并查集从大的边开始合并,因为你要合并的这两个联 ...

  8. 滑动窗口解决Substring Search Problem

    2018-07-18 11:19:19 一.Minimum Window Substring 问题描述: 问题求解: public String minWindow(String s, String ...

  9. 二分检索函数lower_bound()和upper_bound()

    二分检索函数lower_bound()和upper_bound() 一.说明 头文件:<algorithm> 二分检索函数lower_bound()和upper_bound() lower ...

  10. Windows 2008 更改网卡绑定顺序

    用 ncpa.cpl 或者用鼠标右键点网上邻居进去也好. 来到网卡列表画面. 然后,你会发觉没有菜单去操作[高级设置], 这里,最高级的步骤来了, 就是你需要按一个 [Alt]把菜单给显示出来,太神奇 ...