[Algorithm] Reservoir Sampling
Given a stream of elements too large to store in memory, pick a random element from the stream with uniform probability.
To solve the problem which n size is unknown, Reservior Sampling is a perfect algorithm to use:
Reservoir sampling algorithm can be used for randomly choosing a sample from a stream of n items, where n is unknow.
Here we still need to prove that
Consider the (i)th item, with its compatibility probability of 1/i. The probability I will be choose the i at the time n > i can be demonstrated by a simple formula
i/i: Probability the ith item will be selected;
(1 - i/i+1): Probability the i+1th item will NOT be selected;
(1 - i/i+2): Probability the i+2th item will NOT be selected;
(1 - 1 / n): Probability the nth item will NOT be selected;
In the end, the probability of ith item will be selected at given n, which n > i is 1/n.
Let’s attempt to solve using loop invariants. On the ith iteration of our loop to pick a random element, let’s assume we already picked an element uniformly from [0, i - 1]. In order to maintain the loop invariant, we would need to pick the ith element as the new random element at 1 / (i + 1) chance. For the base case where i = 0, let’s say the random element is the first one.
function Reservoir_Sampling (ary) {
let selected;
const size = ary.length; for (let i = 0; i < size; i++) {
if (Math.floor(Math.random() * size) === 1) {
selected = ary[i];
break;
}
} return selected;
}
[Algorithm] Reservoir Sampling的更多相关文章
- 【算法34】蓄水池抽样算法 (Reservoir Sampling Algorithm)
蓄水池抽样算法简介 蓄水池抽样算法随机算法的一种,用来从 N 个样本中随机选择 K 个样本,其中 N 非常大(以至于 N 个样本不能同时放入内存)或者 N 是一个未知数.其时间复杂度为 O(N),包含 ...
- 算法系列:Reservoir Sampling
copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
- 蓄水池采样算法(Reservoir Sampling)
蓄水池采样算法 问题描述分析 采样问题经常会被遇到,比如: 从 100000 份调查报告中抽取 1000 份进行统计. 从一本很厚的电话簿中抽取 1000 人进行姓氏统计. 从 Google 搜索 & ...
- Reservoir Sampling - 蓄水池抽样
问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...
- 水塘抽样(Reservoir Sampling)问题
水塘抽样是一系列的随机算法,其目的在于从包含n个项目的集合S中选取k个样本,其中n为一很大或未知的数量,尤其适用于不能把所有n个项目都存放到主内存的情况. 在高德纳的计算机程序设计艺术中,有如下问题: ...
- Spark MLlib之水塘抽样算法(Reservoir Sampling)
1.理解 问题定义可以简化如下:在不知道文件总行数的情况下,如何从文件中随机的抽取一行? 首先想到的是我们做过类似的题目吗?当然,在知道文件行数的情况下,我们可以很容易的用C运行库的rand函数随机的 ...
- Reservoir Sampling - 蓄水池抽样问题
问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...
- 蓄水池抽样算法 Reservoir Sampling
2018-03-05 14:06:40 问题描述:给出一个数据流,这个数据流的长度很大或者未知.并且对该数据流中数据只能访问一次.请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等. 问题求 ...
- 随机抽样问题(蓄水池问题Reservoir Sampling)
转自:孤影醉残阳 http://hi.baidu.com/siyupy/item/e4bb218fedf4a0864414cfad 随机抽样问题(蓄水池问题Reservoir Sampling) 随即 ...
随机推荐
- 【图像处理】基于OpenCV底层实现的直方图匹配
image processing 系列: [图像处理]图片旋转 [图像处理]高斯滤波.中值滤波.均值滤波 直方图匹配算法.又称直方图规定化.简单说.就是依据某函数.或者另外一张图片的引导,使得原图改变 ...
- Dynamic-Link Library Redirection
Dynamic-Link Library Redirection Applications can depend on a specific version of a shared DLL and s ...
- IBDAP-CMSIS-DAP
IBDAP-CMSIS-DAP Armstart's CMSIS-DAP firmware implementation in gcc and makefile. http://www.armstar ...
- oracle sql 高级
1 时间 如果是从当前时间到前一个月的这个时候之间的记录总条数: select count(1) from uis_md_stcustom u where firsttime betw ...
- go实现 raft Paxos 算法
https://github.com/happyer/distributed-computing https://www.zhihu.com/people/ding-kai-54/posts
- hdu4333 Revolving Digits(扩展kmp)
Revolving Digits Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 百度公共dns
常用公共DNS服务器地址 DNS(Domain Name System),即域名解析系统,作为将域名和IP地址相互映射的一个分布式数据库,能够使人通过相对好记的域名访问网站,而是一串数字.目前国内运营 ...
- SystemParametersinfo用法(二)
SystemParametersinfo用法(二) SPI_SETDOUBLECLKHEGHT:将ulParam参数的值设为双击矩形区域的高度.双击矩形区域是指双击中的第2次点击时鼠标指针必须落在的区 ...
- clientX, clientY,offsetX, offsetY,screenX, screenY, x, y
clientX, clientY是鼠标当前相对于网页的位置,当鼠标位于页面左上角时clientX=0, clientY=0: offsetX, offsetY是鼠标当前相对于网页中的某一区域的位置,当 ...
- WordPress主题开发:style.css主题信息标记
在最简单的情况下,一个WordPress主题由两个文件构成: index.php ------------------主模版 style.css -------------------主样式表 而且s ...