DLRS(近三年深度学习应用于推荐系统论文汇总)
Recommender Systems with Deep Learning Improving Scalability of Personalized Recommendation Systems for Enterprise Knowledge Workers
– Authors: C Verma, M Hart, S Bhatkar, A Parker (2016)
Multi-modal learning for video recommendation based on mobile application usage
– Authors: X Jia, A Wang, X Li, G Xun, W Xu, A Zhang (2016)
Collaborative Filtering with Stacked Denoising AutoEncoders and Sparse Inputs
– Authors: F Strub, J Mary (2016)
Applying Visual User Interest Profiles for Recommendation and Personalisation
– Authors: J Zhou, R Albatal, C Gurrin (2016)
Comparative Deep Learning of Hybrid Representations for Image Recommendations
– Authors: C Lei, D Liu, W Li, Zj Zha, H Li (2016)
Tag-Aware Recommender Systems Based on Deep Neural Networks
– Authors: Y Zuo, J Zeng, M Gong, L Jiao (2016)
Quote Recommendation in Dialogue using Deep Neural Network
– Authors: H Lee, Y Ahn, H Lee, S Ha, S Lee (2016)
Toward Fashion-Brand Recommendation Systems Using Deep-Learning: Preliminary Analysis
– Authors: Y Wakita, K Oku, K Kawagoe (2016)
Word embedding based retrieval model for similar cases recommendation
– Authors: Y Zhao, J Wang, F Wang (2016)
ConTagNet: Exploiting User Context for Image Tag Recommendation
– Authors: Ys Rawat, Ms Kankanhalli (2016)
Wide & Deep Learning for Recommender Systems
– Authors: Ht Cheng, L Koc, J Harmsen, T Shaked, T Chandra… (2016)
On Deep Learning for Trust-Aware Recommendations in Social Networks.
– Authors: S Deng, L Huang, G Xu, X Wu, Z Wu (2016)
A Survey and Critique of Deep Learning on Recommender Systems
– Authors: L Zheng (2016)
Collaborative Filtering and Deep Learning Based Hybrid Recommendation for Cold Start Problem
– Authors: J Wei, J He, K Chen, Y Zhou, Z Tang (2016)
Collaborative Filtering and Deep Learning Based Recommendation System For Cold Start Items
– Authors: J Wei, J He, K Chen, Y Zhou, Z Tang (2016)
Deep Neural Networks for YouTube Recommendations
– Authors: P Covington, J Adams, E Sargin (2016)
Towards Latent Context-Aware Recommendation Systems
– Authors: M Unger, A Bar, B Shapira, L Rokach (2016)
Automatic Recommendation Technology for Learning Resources with Convolutional Neural Network
– Authors: X Shen, B Yi, Z Zhang, J Shu, H Liu (2016)
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
– Authors: Z Xu, C Chen, T Lukasiewicz, Y Miao, X Meng (2016)
Latent Factor Representations for Cold-Start Video Recommendation
– Authors: S Roy, Sc Guntuku (2016)
Convolutional Matrix Factorization for Document Context-Aware Recommendation
– Authors: D Kim, C Park, J Oh, S Lee, H Yu (2016)
Conversational Recommendation System with Unsupervised Learning
– Authors: Y Sun, Y Zhang, Y Chen, R Jin (2016)
RecSys’ 16 Workshop on Deep Learning for Recommender Systems (DLRS)
– Authors: A Karatzoglou, B Hidasi, D Tikk, O Sar (2016, Workshop proceedings)
Ask the GRU: Multi-task Learning for Deep Text Recommendations
– Authors: T Bansal, D Belanger, A Mccallum (2016)
Recurrent Coevolutionary Latent Feature Processes for Continuous-Time Recommendation
– Authors: H Dai, Y Wang, R Trivedi, L Song (2016)
Keynote: Deep learning for audio-based music recommendation
– Authors: S Dieleman (2016)
Tumblr Blog Recommendation with Boosted Inductive Matrix Completion
– Authors: D Shin, S Cetintas, Kc Lee, Is Dhillon (2015)
Deep Collaborative Filtering via Marginalized Denoising Auto-encoder
– Authors: S Li, J Kawale, Y Fu (2015)
Learning Image and User Features for Recommendation in Social Networks
– Authors: X Geng, H Zhang, J Bian, Ts Chua (2015)
UCT-Enhanced Deep Convolutional Neural Network for Move Recommendation in Go
– Authors: S Paisarnsrisomsuk (2015)
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
– Authors: A Elkahky, Y Song, X He (2015)
It Takes Two to Tango: An Exploration of Domain Pairs for Cross-Domain Collaborative Filtering
– Authors: S Sahebi, P Brusilovsky (2015)
Latent Context-Aware Recommender Systems
– Authors: M Unger (2015)
Learning Distributed Representations from Reviews for Collaborative Filtering
– Authors: A Almahairi, K Kastner, K Cho, A Courville (2015)
A Collaborative Filtering Approach to Real-Time Hand Pose Estimation
– Authors: C Choi, A Sinha, Jh Choi, S Jang, K Ramani (2015)
Collaborative Deep Learning for Recommender Systems
– Authors: H Wang, N Wang, Dy Yeung (2014)
CARS2: Learning Context-aware Representations for Context-aware Recommendations
– Authors: Y Shi, A Karatzoglou, L Baltrunas, M Larson, A Hanjalic (2014)
Relational Stacked Denoising Autoencoder for Tag Recommendation
– Authors: H Wang, X Shi, Dy Yeung (2014)
DLRS(近三年深度学习应用于推荐系统论文汇总)的更多相关文章
- DLRS(深度学习应用于推荐系统论文汇总--2017年8月整理)
Recommender Systems with Deep Learning Alessandro:ADAAlessandro Suglia, Claudio Greco, Cataldo Musto ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
- 深度学习应用在推荐系统的论文-----A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System
1.题目:一种新的基于深度学习的协同过滤推荐系统 2.摘要: 以协同过滤(CF)为基础的模型主要获取用户和项目的交互或者相关性.然而,现有的基于CF的方法只能掌握单一类型的关系,如RBM,它只能获取用 ...
- arXiv 2015深度学习年度十大论文
由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方.这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内.它反映了学术界当前的整体趋势,我们看到,近来发布 ...
- python 深度学习 库文件安装出错汇总
Cython_bbox FairMOT | win10下cython-bbox安装的心酸之路_是阳阳呀的博客-CSDN博客 swig 安装polyiou.py https://blog.csdn.ne ...
- 推荐系统遇上深度学习(十)--GBDT+LR融合方案实战
推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 经典书单 —— 语言/算法/机器学习/深度学习/AI/CV/PGM
0.0 计算机科学 <Lex 与 Yacc> Think Complexity(使用 Python 语言) GitHub - AllenDowney/ThinkComplexity: Co ...
- SIGAI深度学习第四集 深度学习简介
讲授机器学习面临的挑战.人工特征的局限性.为什么选择神经网络.深度学习的诞生和发展.典型的网络结构.深度学习在机器视觉.语音识别.自然语言处理.推荐系统中的应用 大纲: 机器学习面临的挑战 特征工程的 ...
随机推荐
- in语句导致查询很慢
1.表A,表B,表C.其中A中的主键是B的外键,一对多的关系:B的主键是C的外键,一对多的关系.最终想查出所有符合条件的C. 原因:开发人员将A表数据先查出来,放到list中,然后用list作为in的 ...
- linux如何通过脚本来修改用户的密码?脚本自动化修改用户密码?
需求描述: linux环境中在创建用户的时候,涉及到修改用户的密码,一般是通过passwd命令进行修改,需要多次的确认,这里考虑通过一条命令直接对密码进行修改 不需要进行交互的方式.在此记录. 操作过 ...
- 股票的历史市盈率查询PE
浦发银行的历史市盈率PE查询:https://androidinvest.com/Stock/History/SH600000/ 白云机场的历史市盈率PE查询:https://androidinves ...
- JS去除字符串左右两端的空格
去除字符串左右两端的空格,在vbscript里面可以轻松地使用 trim.ltrim 或 rtrim,但在js中却没有这3个内置方法,需要手工编写.下面的实现方法是用到了正则表达式,效率不错,并把这三 ...
- spring+mybatise注解实现
spring+mybatise注解实现 spring.jpa.database=MYSQL spring.datasource.type=com.alibaba.druid.pool.DruidDat ...
- js提取新浪邮箱的信用卡
js提取用户新浪邮箱中的信用卡信息,是js非nodejs. 对比py,之前就做不好,出现了复杂点选验证码.js的开发速度只需要py的三分之一,甚至十分之一. js在客户端执行,py在后端执行,py要实 ...
- Java实现经理与员工的差异
对于在同一家公司工作的经历和员工而言,两者是有很多共同点的.例如,每个月都要发工资,但是经理在完成目标任务后,还会获得奖金.此时,利用员工类来编写经理类就会少写很多代码,利用继承技术可以让经理类使用员 ...
- JAVA WEB ------ 文件下载及导出数据到office Execl表格
文件下载需要五步: 1.设置文件ContentType类型 // 设置文件ContentType类型,这样设置,会自动判断下载文件类型 response.setContentType("mu ...
- grid网格的流动一
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 网站前端性能优化之javascript和css
之前看过Yahoo团队写的一篇关于网站性能优化的文章,文章是2010年左右写的,虽然有点老,但是很多方面还是很有借鉴意义的.关于css的性能优化,他提到了如下几点: CSS性能优化 1.把样式表置于顶 ...