@不要在奋斗的年纪 选择安逸

均值模糊

  • 中值模糊
  • 自定义模糊
  • 意义与应用场景

模糊的基本原理:

1、基于离散卷积

2、定义好每个卷积核

3、不同卷积核得到不同的卷积效果

4、模糊是卷积的一种表象

#均值模糊 (2,8)高模糊2 宽模糊8
def blur_demo(image):
dst = cv.blur(image,(2,8))
cv.imshow('blur_demo',dst) #中值模糊 适合椒盐噪声去噪
def median_blur_demo(image):
dst = cv.medianBlur(image,5)
cv.imshow('median_blur_demo',dst) #自定义模糊
def customer_blur_demo(image):
#定义卷积核---均值模糊的效果
# kernel = np.ones([5,5],np.float32/25)
# 定义卷积核---锐化
kernel = np.array([[0,-1,0],[-1,5,-1],[0,-1,0]],np.float32)
dst = cv.filter2D(image,-1,kernel=kernel)
cv.imshow('customer_blur_demo',dst)

高斯噪点

高斯分布的概率密度函数

numpy.random.normal(loc=0.0, scale=1.0, size=None)

参数的意义为:

loc:float

概率分布的均值,对应着整个分布的中心center

scale:float

概率分布的标准差,对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高

size:int or tuple of ints

输出的shape,默认为None,只输出一个值,可以指定输出值个数返回列表

我们更经常会用到np.random.randn(size)所谓标准正太分布(μ=0, σ=1),对应于np.random.normal(loc=0, scale=1, size)

n = np.random.normal(0,8,4)
print(n)
##[ -5.65830268 4.27277753 2.97616802 -15.1577604 ]

#定义高斯噪声
def gaussian_noise(image):
h,w,ch = image.shape
for row in range(h):
for col in range(w):
s = np.random.normal(0,20,3) #均值为0 方差为20 输出3个值
b = image[row,col,0] #blue
g = image[row,col,1] #green
r = image[row,col,2] #red
# 给blue层加上正态分布噪点
image[row,col,0] = clamp(b + s[0])
image[row,col,1] = clamp(g + s[1])
image[row,col,2] = clamp(r + s[2])
cv.imshow('noise image',image)

"""高斯模糊:这里(5, 5)表示高斯矩阵的长与宽都是5 标准差取6,当取尺寸(5,5)时标准差失效、当取尺寸(0,0)时标准差有效。并且高斯矩阵的尺寸越大或者标准差越大,处理过的图像模糊程度越大"""
dst = cv.GaussianBlur(src,(5,5),6)
cv.imshow('Gaussian Blur1',dst)
dst = cv.GaussianBlur(src,(0,0),10)
cv.imshow('Gaussian Blur2',dst)

EPF(Edge Preserver Filter)边缘保留滤波

高斯模糊只考虑了权重,只考虑了像素空间的分布,没有考虑像素值和另一个像素值之间差异的问题,如果像素间差异较大的情况下(比如图像的边缘),高斯模糊会进行处理,但是我们不需要处理边缘,要进行的操作就叫做边缘保留滤波(EPF)

知识点:边缘轮廓差异较大的时候得到保留、

案例:

"""
#EPF-高斯双边滤波
其中各参数所表达的意义:
src:原图像;
d:像素的邻域直径,可有sigmaColor和sigmaSpace计算可得;
sigmaColor:颜色空间的标准方差,一般尽可能大;
sigmaSpace:坐标空间的标准方差(像素单位),一般尽可能小。
"""
def bi_demo(image):
dst = cv.bilateralFilter(image,0,150,10)
cv.imshow('bilateralFilter',dst) """
#EPF-均值偏移滤波
其中各参数所表达的意义:
src:原图像;
sp:空间窗的半径(The spatial window radius);
sr:色彩窗的半径(The color window radius);
注意: 通过均值迁移来进行边缘保留滤波有时会导致图像过度模糊
"""
def shift_demo(image):
dst = cv.pyrMeanShiftFiltering(image,10,50)
cv.imshow('pyrMeanShiftFiltering',dst)

[python-opencv] 模糊操作的更多相关文章

  1. opencv python:模糊操作

    均值模糊 中值模糊 自定义模糊 模糊操作的基本原理 基于离散卷积 定义好每个卷积核 不同卷积核得到不同的卷积效果 模糊是卷积的一种表象 blur cv2.blur(image, (1, 3)) 第二个 ...

  2. python实现模糊操作

    目录: (一)模糊或平滑与滤波的介绍 (二)均值模糊 (1) 原理 (2)代码实现-----均值模糊函数blur() (三)中值模糊------mediaBlur函数 (四)高斯模糊------Gau ...

  3. Python openCV基础操作

    1.图片加载.显示和保存 import cv2 # 读取图片 img = cv2.imread("img1.jpg") # 生成灰色图片 imgGrey = cv2.imread( ...

  4. Python+OpenCV图像处理(七)—— 滤波与模糊操作

    过滤是信号和图像处理中基本的任务.其目的是根据应用环境的不同,选择性的提取图像中某些认为是重要的信息.过滤可以移除图像中的噪音.提取感兴趣的可视特征.允许图像重采样等等.频域分析将图像分成从低频到高频 ...

  5. 【Python | opencv+PIL】常见操作(创建、添加帧、绘图、读取等)的效率对比及其优化

    一.背景 本人准备用python做图像和视频编辑的操作,却发现opencv和PIL的效率并不是很理想,并且同样的需求有多种不同的写法并有着不同的效率.见全网并无较完整的效率对比文档,遂决定自己丰衣足食 ...

  6. python opencv show图片,debug技巧

    debug的时候可以直接把图片画出来debug. imshow函数就是python opencv的展示图片的函数,第一个是你要起的图片名,第二个是图片本身.waitKey函数是用来展示图片多久的,默认 ...

  7. python - opencv 的一些小技巧备忘

    python - opencv 的一些小技巧备忘 使用python-opencv来处理图像时,可以像matlab一样,将一幅图像看成一个矩阵,进行矢量操作,以加快代码运行速度. 下面记录几个常用的操作 ...

  8. python anaconda 常用操作;conda 命令指南

    在使用 python anaconda时,经常会用到很多常用操作,记录下来,方便以后更好地使用: conda: Conda既是一个包管理器又是一个环境管理器.你肯定知道包管理器,它可以帮你发现和查看包 ...

  9. python+opencv实现车牌定位

    写在前面 HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三. 由于时间紧张,代码没有进行任何优化, ...

  10. Python OpenCV图片转视频 工具贴(三)

    Python OpenCV图片转视频 粘贴即用,注意使用时最好把自己的文件按照数字顺序命名.按照引导输入操作. # 一键傻瓜式引导图片串成视频 # 注意使用前最好把文件命名为数字顺序格式 import ...

随机推荐

  1. 启用sharepoin2013中的ChartWebPart

    首先看一张sharepoint2013中ChartWebPart的效果图. 在sharepoint2010中加入了一个新的webpart,叫ChartWebPart,提供了对数据的图表展示,可以对数据 ...

  2. Win10 虚拟桌面

    我们可以建立多个桌面,各个桌面上运行的窗口任务互不干扰,这就是虚拟桌面 创建虚拟桌面:Win + Ctrl + D查看虚拟桌面:Win + Tab删除当前虚拟桌面:Win + Ctrl + F4切换到 ...

  3. 来数一数XML解析成为Dataset数据

    最近在看一些接口,所以目标就是写接口啦,但是我想说的是公司的业务还不曾了解,所以自己先来做一个小小的demo练习吧,主要知道需要和xml有关系的,但是之前从来没有接触过解析xml文件的,在玩撒谎能够搜 ...

  4. [Z]修炼成C++高手必看的C++书单

    增添于网上的一些书单: C++/OPP/OOD系列: 层级一:语法/语意(C++) [Lippman2000] Essential C++ Essential C++,by Stanley B. Li ...

  5. Masonry — 使用纯代码进行iOS应用的autolayout自适应布局

    本文转载至   http://www.ios122.com/2015/09/masonry/ 简化iOS应用使用纯代码机型自适应布局的工作,使用一种简洁高效的语法替代NSLayoutConstrain ...

  6. linux进程永久放后台运行

    我们使用ssh连接服务器之后,如果在执行某个命令需要时间特别长,当把终端断掉之后,命令就自动停止了一般我们在ssh客户端执行命令之后,默认他的父进程是ssh,所以把ssh终端关掉之后,子进程也就被自动 ...

  7. vs必备快捷键整理

    .格式化代码:Ctrl+E,D .格式化部分代码:选中代码->Ctrl+K,F.或者Ctrl+E,F. .折叠cs文件所有方法:Ctrl+M,O .打开或折叠所有代码:Ctrl+M,L (打开或 ...

  8. IOS设计模式第二篇之单例设计模式

    现在我们的组件已经有组织了.你需要从其他的地方得到数据,你也可以创建一个API类管理数据这个下个设计模式单例里面介绍. 这个单例设计模式确保这个类仅仅拥有一个实例,并且为这个实例提供一个全局的访问点. ...

  9. 【抓包分析】 charles + 网易mumu 模拟器数据包

    charles  的使用.我就不再多说了.可以参考以往文章,传送门: https://www.cnblogs.com/richerdyoung/p/8616674.html 此处主要说网易模拟器的使用 ...

  10. Excel 公式集

    1.  Excel 公式集 按身份证计算年龄 按日计算的 (2018/12/20)(身份证 C2): =TRUNC((DAYS360(CONCATENATE(MID(C2,7,4),"/&q ...