机器学习入门-贝叶斯中文新闻分类任务 1. .map(做标签数字替换) 2.CountVectorizer(词频向量映射) 3.TfidfVectorizer(TFDIF向量映射) 4.MultinomialNB()贝叶斯模型构建
1.map做一个标签的数字替换
2.vec = CountVectorizer(lowercase=False, max_features=4000) # 从sklean.extract_feature.text 导入,根据词频做一个数字的映射,max_feature表示的是最大的特征数
需要先使用vec.fit ,再使用vec.transform 才有效
3. vec = TfidfVectorizer(lowercase=False, max_features=4000) # 从sklean.extract_feature.text 导入,根据TF-dif做一个数字的映射,max_feature表示的是最大的特征数
4.MultinomialNB() 进行贝叶斯模型的构建,这里使用的是一个向量相似度的计算,采用的是余弦定理,from sklean,naive_bayes
对于需要构成语料库的数据,我们需要去停用词
停用词包括
1. 语料中大量出现的 如 1.!, 2.", 3.#, 4.$, 5.%
2. 没啥大用 1.一下 2.一些 3.一项 4.一则
关键词提取
TF-IDF
比如有3个词:中国,蜜蜂,养殖
TF(词频):表示的是蜜蜂在这个文章里出现的次数,即词频/ 这个文章词的个数
IDF(拟文档评率):表示的是log(文章总数/出现这个词文章的个数+1) 比如一共有10000个文章,出现这个词的文章为100, 那么idf约等于3
TF-IDF = TF * IDF
相似度计算:
比如句子A: 我喜欢看电视,不喜欢看电影
句子B: 我不喜欢看电视,也不喜欢看电影
对两个句子进行分词, 语料库:我,喜欢,看,电视,电影,不,也
统计词频:
句子A : 我1, 喜欢2, 看2, 电视1, 不1, 电影1, 也0
句子B: 我1, 喜欢2, 看2, 电视1, 不2, 电影1, 也1
转换为向量的形式
A = [1, 2, 2, 1, 1, 1, 0]
B = [1, 2, 2, 1, 2, 1, 1]
使用余弦相似度来进行相似度的匹配,做为p(d|h)
1.载入新闻数据
2.使用结巴分词器进行分词
3.将分词后的结果去除停用词
4. 将去除停用词的数据增加一列标签
5.进行数据的拆分,分成训练数据和测试数据
6.对训练数据和测试数据进行文本表示,使用CountVectorizer(),先fit训练数据的变量,然后在分别transform训练数据和测试数据,进行词频向量化操作
7.使用贝叶斯进行训练和预测
import pandas as pd
import numpy as np
import jieba # 1.导入数据语料的新闻数据
df_data = pd.read_table('data/val.txt', names=['category', 'theme', 'URL', 'content'], encoding='utf-8') # 2.对语料库进行分词操作
df_contents = df_data.content.values.tolist() # list of list 结构
Jie_content = []
for df_content in df_contents:
split_content = jieba.lcut(df_content)
if len(split_content) > 1 and split_content != '\t\n':
Jie_content.append(split_content) # 3. 导入停止词的语料库, sep='\t'表示分隔符, quoting控制引号的常量, names=列名, index_col=False,不用第一列做为行的列名, encoding
stopwords = pd.read_csv('stopwords.txt', sep='\t', quoting=3, names=['stopwords'], index_col=False, encoding='utf-8')
print(stopwords.head()) # 对文本进行停止词的去除
def drop_stops(Jie_content, stopwords):
clean_content = []
all_words = []
for j_content in Jie_content:
line_clean = []
for line in j_content:
if line in stopwords:
continue
line_clean.append(line)
all_words.append(line)
clean_content.append(line_clean) return clean_content, all_words
# 将DateFrame的stopwords数据转换为list形式
stopwords = stopwords.stopwords.values.tolist()
clean_content, all_words = drop_stops(Jie_content, stopwords)
print(clean_content[0]) # 4. 构造训练数据,变量是content,标签是category
df_content = pd.DataFrame({'content':clean_content, 'label':df_data['category']})
# 使用map将标签转换为数字形式
print(df_content.label.unique())
label_map = {'汽车':1, '财经':2, '科技':3, '健康':4, '体育':5, '教育':6, '文化':7, '军事':8, '娱乐':9, '时尚':10}
df_content['label'] = df_content['label'].map(label_map) # 5.使用train_test_split 分出训练集和测试集 from sklearn.cross_validation import train_test_split
train_x, test_x, train_y, test_y = train_test_split(df_content['content'], df_content['label'], random_state=1)
# 将样本特征转换为词频向量的形式 from sklearn.feature_extraction.text import CountVectorizer
# 6. 为了满足CountVectorizer的形式,我们需要对转换前的样本做转换 train_x_str = []
for line in train_x:
str_line = ' '.join(line)
train_x_str.append(str_line)
test_x_str = []
for line in test_x:
str_line = ' '.join(line)
test_x_str.append(str_line) # 将文本数据根据词频转换为向量形式
vec = CountVectorizer(lowercase=False, max_features=4000)
vec.fit(train_x_str) # 7步 使用贝叶斯模型进行训练和测试
from sklearn.naive_bayes import MultinomialNB print('', np.shape(vec.transform(train_x_str)))
classifier = MultinomialNB()
classifier.fit(vec.transform(train_x_str), train_y)
print(classifier.score(vec.transform(test_x_str), test_y)) # 8. 使用TF-IDF构建向量矩阵
from sklearn.feature_extraction.text import TfidfVectorizer vec = TfidfVectorizer(lowercase=False, max_features=4000)
vec.fit(train_x_str)
classifier.fit(vec.transform(train_x_str), train_y)
print(classifier.score(vec.transform(test_x_str), test_y)) vec = TfidfVectorizer(lowercase=False, max_features=4000, ngram_range=(1, 3))
vec.fit(train_x_str)
classifier.fit(vec.transform(train_x_str), train_y)
print(classifier.score(vec.transform(test_x_str), test_y))
机器学习入门-贝叶斯中文新闻分类任务 1. .map(做标签数字替换) 2.CountVectorizer(词频向量映射) 3.TfidfVectorizer(TFDIF向量映射) 4.MultinomialNB()贝叶斯模型构建的更多相关文章
- 朴素贝叶斯算法——实现新闻分类(Sklearn实现)
1.朴素贝叶斯实现新闻分类的步骤 (1)提供文本文件,即数据集下载 (2)准备数据 将数据集划分为训练集和测试集:使用jieba模块进行分词,词频统计,停用词过滤,文本特征提取,将文本数据向量化 停用 ...
- Python之机器学习-朴素贝叶斯(垃圾邮件分类)
目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 ...
- 机器学习入门-贝叶斯构造LDA主题模型,构造word2vec 1.gensim.corpora.Dictionary(构造映射字典) 2.dictionary.doc2vec(做映射) 3.gensim.model.ldamodel.LdaModel(构建主题模型)4lda.print_topics(打印主题).
1.dictionary = gensim.corpora.Dictionary(clean_content) 对输入的列表做一个数字映射字典, 2. corpus = [dictionary,do ...
- NLP系列(2)_用朴素贝叶斯进行文本分类(上)
作者:龙心尘 && 寒小阳 时间:2016年1月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50597149 h ...
- NLP系列(3)_用朴素贝叶斯进行文本分类(下)
作者: 龙心尘 && 寒小阳 时间:2016年2月. 出处: http://blog.csdn.net/longxinchen_ml/article/details/50629110 ...
- 贝叶斯--旧金山犯罪分类预测和电影评价好坏 demo
来源引用:https://blog.csdn.net/han_xiaoyang/article/details/50629608 1.引言 贝叶斯是经典的机器学习算法,朴素贝叶斯经常运用于机器学习的案 ...
- TensorFlow.NET机器学习入门【4】采用神经网络处理分类问题
上一篇文章我们介绍了通过神经网络来处理一个非线性回归的问题,这次我们将采用神经网络来处理一个多元分类的问题. 这次我们解决这样一个问题:输入一个人的身高和体重的数据,程序判断出这个人的身材状况,一共三 ...
- 基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
- 基于Text-CNN模型的中文文本分类实战
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...
随机推荐
- MySQL表类型MyISAM/InnoDB的区别(解决事务不回滚的问题)(转)
本文参考: http://mysqlpub.com/thread-5383-1-1.html http://blog.csdn.net/c466254931/article/details/53463 ...
- stenciljs 学习六 组件开发样式指南
组件不是动作,最好使用名词而不是动词, 文件结构 每个文件一个组件. 每个目录一个组件.虽然将类似的组件分组到同一目录中可能是有意义的,但我们发现当每个组件都有自己的目录时,更容易记录组件. 实现(. ...
- 和为 s 的两个数字(和为 s 的连续正数序列)
题目 输入一个递增排序的数组和一个数字 s,在数组中查找两个数,得它们的和正好是 s.如果有多对数字的和等于 s,输出任意一对即可 思路 我们先在数组中选择两个数字,如果它们的和等于输入的 s,我们就 ...
- 教你如何阅读Oracle数据库官方文档
< Ask Oracle官方原创 > Oracle 官方文档 数量庞大,而且往往没有侧重点,让oracle新手看起来很费力.但是,仍有很多Oracle使用者认为任何oracle学习资料都比 ...
- spring cloud 知识点
优秀的介绍资料: 资料 地址 spring cloud 中文网 https://springcloud.cc/ spring cloud 介绍 https://www.jianshu.com/p/74 ...
- LOJ 121 「离线可过」动态图连通性——LCT维护删除时间最大生成树 / 线段树分治
题目:https://loj.ac/problem/121 离线,LCT维护删除时间最大生成树即可.注意没有被删的边的删除时间是 m+1 . 回收删掉的边的节点的话,空间就可以只开 n*2 了. #i ...
- POJ1639顶点度限制最小生成树
题目:http://poj.org/problem?id=1639 见汪汀的<最小生成树问题的拓展>. 大体是先忽略与根节点相连的边,做一遍kruscal,得到几个连通块和一个根节点: 然 ...
- OpenWrt在没有Luci时刷机
scp上传bin文件到root文件夹下. sysupgrade openwrt-ar71xx-generic-dragino2-squashfs-sysupgrade.bin 等待重启
- 【python】正则表达式-正则表达式常见的字符和符号表
正则表达式常见的字符和符号表:
- dede频道页实现三级栏目嵌套调用文章
dede频道页实现三级栏目嵌套调用文章: //支持arclist标签开始--> $typeid = $row['id']; if((class_exists('PartView'))) { ...