插值interpolate模块

计算插值有两个基本方法:

1、对一个完整的数据集去拟合一个函数(一条线穿过所有数据集的)

2、对数据集的不同部分拟合出不同的函数,而函数之间的曲线平滑对接

一维插值

interp1d(x, y, kind='linear', ...)

x和y参数是一系列已知的数据点,kind参数是插值类型,可以是字符串或整数,

候选值 作用
"zero"、"nearest" 阶梯插值,相当于0阶B样条曲线
‘slinear’ 、'linear' 线性插值,用一条直线连接所有的取样点,相当于一阶B样条曲线
‘quadratic’ 、'cubic' 二阶和三阶B样条曲线,更高阶的曲线可以直接使用整数值指定
import scipy.interpolate
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
# 创建待插值的数据
x= np.array([0, 1, 2, 3, 4, 5, 6, 7])
y= np.array([3, 4, 3.5, 2, 1, 1.5, 1.25, 0.9])
xx = np.linspace(x.min(), x.max(), 1000) # 设置x的最大值和最小值以防止插值数据越界
fig, ax = plt.subplots(figsize=(8, 4)) # 返回窗口和坐标系
ax.scatter(x, y) # 绘制散点图
for n in ['linear','zero', 'slinear', 'quadratic', 'cubic', 5]:
# 线性、阶梯插值、线性插值、二阶插值、三阶B样条插值
f = interp1d(x, y, kind = n) # 得到插值函数
ax.plot(xx, f(xx), label= n)
ax.legend()
ax.set_ylabel("y", fontsize=18)
ax.set_xlabel("x", fontsize=18)
plt.show()

样条插值

样条插值需要两个基本步骤

1、找到一维曲线的B样条表示

scipy.interpolate.splrep(x, y, xb=None, xe=None, k=3, s=None)

参数:

  x,y:定义曲线y=f(x)的数据点

  xb,xe:float 合适的间隔,如果为None,则分别为x[0]和x[-1]

  k:样条的种类,建议使用3次样条,1 <= k <= 5

  s:float,平滑度,用户可以使用s来控制贴近度平滑度之间的权衡。较大的s意味着更平滑,而较小的s意味着较少的平滑。

返回:

  tck:元组,(t, c, k)包含结矢量,B样条系数和样条程度的元组。

2、在期望点处评估B样条

scipy.interpolate.splev(x, tck, der=0, ext=0)

给定B样条表示的节点和系数,评估平滑多项式及其导数的值。

参数:

  x:array_like,一组点,样条的节点数

  tck:元组,由splrep返回的长度为3的系列,包含样条的阶,系数和度数。

  der:int 要计算的样条的倒数的阶数(必须小于或等于k)

返回:ndarray或ndaray列表,表示在x点处计算 的样条函数的值 的数组。

import numpy as np
import matplotlib.pyplot as plt
from scipy import interpolate x = np.arange(0, 2*np.pi+np.pi/4, 2*np.pi/8)
y = np.sin(x)
tck = interpolate.splrep(x, y) # 样条插值系数
xnew = np.arange(0, 2*np.pi, np.pi/50) # 插值范围
ynew = interpolate.splev(xnew, tck) plt.figure()
plt.plot(x, y, 'rx') # 散点图
plt.plot(xnew, ynew, "*") # 三次样条插值
plt.plot(xnew, np.sin(xnew), "--") # True
plt.plot(x, y, 'b') # 线性插图 plt.legend(["Scatter", 'Linear', 'Cubic Spline', 'True'])
plt.axis([-0.05, 6.33, -1.05, 1.05])
plt.title('Cubic-spline interpolation')
plt.show()

参考文献:

数学建模三剑客MSN

Scipy的更多相关文章

  1. python安装numpy、scipy和matplotlib等whl包的方法

    最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...

  2. win7系统下python安装numpy,matplotlib,scipy和scikit-learn

    1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...

  3. python scipy学习-曲线拟合

    根据某地每月的平均温度[17, 19, 21, 28, 33, 38, 37, 37, 31, 23, 19, 18]拟合温度函数. import numpy as np import matplot ...

  4. [python] 安装numpy+scipy+matlotlib+scikit-learn及问题解决

    这篇文章主要讲述Python如何安装Numpy.Scipy.Matlotlib.Scikit-learn等库的过程及遇到的问题解决方法.最近安装这个真是一把泪啊,各种不兼容问题和报错,希望文章对你有所 ...

  5. windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等

    安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器 ...

  6. Scipy - Python library - Math tool - Begin

    Introduction Scientific Computing Tools for Python. Seen in Scipy.org. Environment Linux, CentOS 7 w ...

  7. Ubuntu下安装Numpy, SciPy and Matplotlib

    Python开发环境包含科学计算,需要安装NumPy, SciPy, Matplotlib.其中Matplotlib依赖于Python和NumPy.我们先安装NumPY和SciPy.  Matplot ...

  8. scipy科学计算库

    特定函数 例贝塞尔函数: 积分 quad,dblquad,tplquad对应单重积分,双重积分,三重积分 from scipy.integrate import quad,dblquad,tplqua ...

  9. Python导入Scipy子模块时出错

    导入Scipy子模块时报错,出现的问题都是提示 61 from numpy._distributor_init import NUMPY_MKL  # requires numpy+mklNo mod ...

  10. Scipy学习笔记 矩阵计算

    Scipy学习笔记 非本人原创  原链接 http://blog.sina.com.cn/s/blog_70586e000100moen.html 1.逆矩阵的求解 >>>impor ...

随机推荐

  1. Python bool值

    a = 10 print(type(a)) #<class 'int'> d = str(a) #把数字转换成str print(type(d)) #<class 'str'> ...

  2. ios开发过程中描述文件(provisioning profile)过期导致ios无法正常安装的处理办法

    1.登录开发者中心,重新编辑描述文件,获得最新的描述文件.(如果对应的P12文件也过期,需要同时下载最新的p12文件).----该步骤需要有权限的人才能操作. 2.下载最新的描述文件和p12文件(如果 ...

  3. Linux运维学习笔记-iptables知识总结

  4. CentOS7安装OpenStack(Rocky版)-09.安装Cinder存储服务组件(控制节点)

    本文分享openstack的Cinder存储服务组件,cinder服务可以提供云磁盘(卷),类似阿里云云盘 ----------------------- 完美的分隔线  -------------- ...

  5. sourceinsight - imsoft.cnblogs

    显示空格的问题,options->document options->visible space 前面的对勾去掉就好了 sourceinsight中文显示乱码问题彻底解决办法:http:/ ...

  6. ubuntu12.04 alternate win7 双系统安装

    ubuntu alternate的安装比desktop复杂一点,因为alternate的安装过程有个步骤是检测cd-rom,如果你是刻盘安装,自然没问题,但是,现在的安装一般是将系统刻到U盘里,或者在 ...

  7. python绘制树枝

    python是解释型语言,下面的程序深刻的说明了这个问题. import turtle def branch(length,level): if level<=0: return turtle. ...

  8. HBulider打包

    1. manifest配置 按照Manifest.json文档说明 manifest配置把工程中的manifest.json文件配置好,下面以我的项目为例进行配置. (1).应用信息 (2).图标配置 ...

  9. 20155315 2016-2017-2 《Java程序设计》第九周学习总结

    教材学习内容总结 1.JDBC架构 数据库驱动 这里的驱动的概念和平时听到的那种驱动的概念是一样的,比如平时购买的声卡,网卡直接插到计算机上面是不能用的,必须要安装相应的驱动程序之后才能够使用声卡和网 ...

  10. js模板引擎---jtemplates使用

    昨天记录了如何使用腾讯的模板引擎,今天记录一下jquery的模板引擎jtemplates.官网:http://jtemplates.tpython.com/ 编写模板:需要在页面引入jquery和jt ...