一、普通索引

示例

a = t.Tensor(4,5)
print(a)
print(a[0:1,:2])
print(a[0,:2]) # 注意和前一种索引出来的值相同,shape不同
print(a[[1,2]]) # 容器索引
 3.3845e+15  0.0000e+00  3.3846e+15  0.0000e+00  3.3845e+15
0.0000e+00 3.3845e+15 0.0000e+00 3.3418e+15 0.0000e+00
3.3845e+15 0.0000e+00 3.3846e+15 0.0000e+00 0.0000e+00
0.0000e+00 1.5035e+38 8.5479e-43 1.5134e-43 1.2612e-41
[torch.FloatTensor of size 4x5] 3.3845e+15 0.0000e+00
[torch.FloatTensor of size 1x2] 3.3845e+15
0.0000e+00
[torch.FloatTensor of size 2] 0.0000e+00 3.3845e+15 0.0000e+00 3.3418e+15 0.0000e+00
3.3845e+15 0.0000e+00 3.3846e+15 0.0000e+00 0.0000e+00
[torch.FloatTensor of size 2x5]

普通索引内存分析

普通索引后的结果和原Tensor的内存共享

print(a[a>1])
import copy
b = copy.deepcopy(a)
a[a>1]=10
print(a,b)
 3.3845e+15
3.3846e+15
3.3845e+15
3.3845e+15
3.3418e+15
3.3845e+15
3.3846e+15
1.5035e+38
[torch.FloatTensor of size 8] 10.0000 0.0000 10.0000 0.0000 10.0000
0.0000 10.0000 0.0000 10.0000 0.0000
10.0000 0.0000 10.0000 0.0000 0.0000
0.0000 10.0000 0.0000 0.0000 0.0000
[torch.FloatTensor of size 4x5] 3.3845e+15 0.0000e+00 3.3846e+15 0.0000e+00 3.3845e+15
0.0000e+00 3.3845e+15 0.0000e+00 3.3418e+15 0.0000e+00
3.3845e+15 0.0000e+00 3.3846e+15 0.0000e+00 0.0000e+00
0.0000e+00 1.5035e+38 8.5479e-43 1.5134e-43 1.2612e-41
[torch.FloatTensor of size 4x5]
array([[  1.00000000e+01,   0.00000000e+00,   1.00000000e+01,
0.00000000e+00, 1.00000000e+01],
[ 0.00000000e+00, 1.00000000e+01, 0.00000000e+00,
1.00000000e+01, 0.00000000e+00],
[ 1.00000000e+01, 0.00000000e+00, 1.00000000e+01,
0.00000000e+00, 0.00000000e+00],
[ 0.00000000e+00, 1.00000000e+01, 8.54792063e-43,
1.51340234e-43, 1.26116862e-41]], dtype=float32)

索引函数gather介绍

方的介绍:
如果input是一个n维的tensor,size为
(x0,x1…,xi−1,xi,xi+1,…,xn−1),dim为i,然后index必须也为n维tensor,size为
(x0,x1,…,xi−1,y,xi+1,…,xn−1),其中y >= 1,最后输出的out与index的size是一样的。
意思就是按照一个指定的轴(维数)收集值
对于一个三维向量来说:

out[i][j][k] = input[index[i][j][k]][j][k]  # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2

参数:
input (Tensor) – 源tensor
dim (int) – 指定的轴数(维数)
index (LongTensor) – 需要聚集起来的数据的索引
out (Tensor, optional) – 目标tensor

简单来说,就是在Tensor(input)的众多维度中针对某一维度(dim参数),使用一维Tensor(index)进行索引,并对其他维度进行遍历。

a = t.arange(16).view(4,4)
index = t.LongTensor([[0,1,2,3]])
print(a)
print(index)
print(a.gather(0,index)) # 逆操作scatter_,注意是inplace的
b = t.zeros(4,4)
b.scatter_(0,index,a.gather(0,index))
print(b)
  0   1   2   3
4 5 6 7
8 9 10 11
12 13 14 15
[torch.FloatTensor of size 4x4] 0 1 2 3
[torch.LongTensor of size 1x4] 0 5 10 15
[torch.FloatTensor of size 1x4] 0 0 0 0
0 5 0 0
0 0 10 0
0 0 0 15
[torch.FloatTensor of size 4x4]

二、高阶索引

和普通索引不同,高阶索引前后一般不会共享内存,后面介绍Tensor内存结构时会提到。

x = t.arange(0,27).view(3,3,3)
print(x)
print(x[[1,2],[1,2],[2,0]]) # x[1,1,2]和x[2,2,0]
print(x[[2,1,0],[0],[0]]) # x[2,0,0]和x[1,0,0]和x[0,0,0]
(0 ,.,.) =
0 1 2
3 4 5
6 7 8 (1 ,.,.) =
9 10 11
12 13 14
15 16 17 (2 ,.,.) =
18 19 20
21 22 23
24 25 26
[torch.FloatTensor of size 3x3x3] 14
24
[torch.FloatTensor of size 2] 18
9
0
[torch.FloatTensor of size 3]

『PyTorch』第五弹_深入理解Tensor对象_中上:索引的更多相关文章

  1. 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法

    在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...

  2. 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

    一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...

  3. 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究

    查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...

  4. 『PyTorch』第五弹_深入理解Tensor对象_中下:数学计算以及numpy比较_&_广播原理简介

    一.简单数学操作 1.逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域. a = t.arange(0,6).view ...

  5. 『PyTorch』第五弹_深入理解Tensor对象_下:从内存看Tensor

    Tensor存储结构如下, 如图所示,实际上很可能多个信息区对应于同一个存储区,也就是上一节我们说到的,初始化或者普通索引时经常会有这种情况. 一.几种共享内存的情况 view a = t.arang ...

  6. 『PyTorch』第五弹_深入理解Tensor对象_上:初始化以及尺寸调整

    一.创建Tensor 特殊方法: t.arange(1,6,2)t.linspace(1,10,3)t.randn(2,3) # 标准分布,*size t.randperm(5) # 随机排序,从0到 ...

  7. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  8. 『PyTorch』第三弹重置_Variable对象

    『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...

  9. 『PyTorch』第十弹_循环神经网络

    RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...

随机推荐

  1. python webdriver 从无到有搭建数据驱动自动化测试框架的步骤和总结

    一步一步搭建数据驱动测试框架的过程和总结 跟吴老学了搭建自动化数据驱动的框架后,我在自己练习的时候,尝试从简单的程序进行一点一点的扩展和优化,到实现这个数据驱动的框架. 先说一下搭建自动化测试框架的目 ...

  2. Linux基础命令---cut

    cut 将文件中每一行的指定内容显示到标准输出. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法         cut [ ...

  3. seo标题关键字描述字数限制Title,keywords,description长度最长多长 ?

    seo标题关键字描述字数限制 seo优化各个搜索引擎收录Title,keywords,description长度最长多长 ?SEO网站优化中Title标签的作用为重中之重,好的Title也就成功了一半 ...

  4. Contiki源码+原理+功能+编程+移植+驱动+网络(转)

    源:Contiki源码+原理+功能+编程+移植+驱动+网络 请链接:http://www.rimelink.com/nd.jsp? id=31&_np=105_315 假设您对于用Contik ...

  5. android 实践项目 总结 (修改)

    Android手机定位与地图实现 在一个不熟悉的环境中,获得自己的位置,选择合适的就餐地点,住宿和公交路线成为一项难题.本次的实践项目就是为了解决上述难题的,通过调用百度地图的接口实现定位.查询公交路 ...

  6. WIFI模块对比介绍

    一.ESP8266(官网 https://espressif.com/)1 简介 乐鑫智能互联平台——ESCP 拥有高性能无线SOC,给移动平台设计师带来福音,它 以最低成本提供最大实用性,为WiFi ...

  7. linux下如何查看当前机器提供了哪些服务

    答:使用netstat工具 在命令行下输入netstat -atun即可列出当前机器提供的服务 netstat各选项解析: -a 列出所有服务 -t 列出tcp相关 -u 列出udp相关 -n 以数字 ...

  8. P3066 [USACO12DEC]逃跑的BarnRunning Away From

    目录 题目 思路 错误&&注意 代码 题目 luoguP3066 思路 虽说这个题目有多种做法,但 左偏树算法: 我们发现这个合并的时候并不好合并,因为存的值不是固定的 那我们是不是可 ...

  9. 【基础配置】Dubbo的配置及使用

    1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,dubbo就是个服务框架,如果没有分布式的需求,其实是不需 ...

  10. P4-Related Tools Installation

    P4-Related Tools Installation 安装P4相关工具的步骤和说明. 本说明只适用于 Ubuntu 14.04 系统. 推荐安装的其他工具 mininet:SDN网络仿真工具 v ...