【算法】有源汇上下界最小流

【题解】上下界

初看以为是最小覆盖,发现边可以重复经过,不对。

要求所有边都经过……那就下界为1,上界为inf的可行流。

源汇……S连入度为0的点,T连出度为0的点?(反正不亏)

后来发现网上说S向所有点连,所有点向T连,想想似乎会快一些。

最后……要求最小就最小流咯。

【BZOJ】2502 清理雪道的更多相关文章

  1. BZOJ 2502: 清理雪道

    BZOJ 2502: 清理雪道 标签(空格分隔): OI-BZOJ OI-最小流 OI-上下界网络流 Time Limit: 10 Sec Memory Limit: 128 MB Descripti ...

  2. BZOJ 2502: 清理雪道 [最小流]

    2502: 清理雪道 题意:任意点出发任意次每条边至少经过一次最小花费. 下界1,裸最小流.... #include <iostream> #include <cstdio> ...

  3. bzoj 2502 清理雪道 (有源汇上下界最小流)

    2502: 清理雪道 Time Limit: 10 Sec  Memory Limit: 128 MB Description        滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场 ...

  4. BZOJ 2502 清理雪道(有源汇上下界最小流)

    题面 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机, ...

  5. bzoj 2502 清理雪道(有源汇的上下界最小流)

    [题意] 有一个DAG,要求每条边必须经过一次,求最少经过次数. [思路] 有上下界的最小流.  边的下界为1,上界为无穷.构造可行流模型,先不加ts边跑一遍最大流,然后加上t->s的inf边跑 ...

  6. BZOJ 2502: 清理雪道 | 有上下界最小流

    #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #defi ...

  7. bzoj 2502: 清理雪道【有上下界有源汇最小流】

    对于原有边,流区间是(1,inf),按着原边连,然后再连(s,i,(0,inf)),(i,t,(0,inf))表示任意位置进出雪场 按着这个建出新图 然后最小流的方法是先跑可行流,设ans为(t,s, ...

  8. Bzoj 2502: 清理雪道 有上下界网络流_最小流

    好长时间没有写网络流了,感觉好手生.对于本题,设一个源点 $s$ 和 $t$.1.由 $s$ 向每个点连一条没有下界,容量为无限大的边,表示以该点为起点.2.由每个点向 $t$ 连一条没有下界,容量为 ...

  9. BZOJ 2502 清理雪道/ Luogu P4843 清理雪道 (有源汇上下界最小流)

    题意 有一个有向无环图,求最少的路径条数覆盖所有的边 分析 有源汇上下界最小流板题,直接放代码了,不会的看dalao博客:liu_runda 有点长,讲的很好,静心看一定能看懂 CODE #inclu ...

随机推荐

  1. Css入门课程 Css基础

    html css javascript三者关系 html是网页内容的载体 css是网页内容的表现,外观控制 javascript是网页逻辑处理和行为控制 css相对于html标签属性的优势 css简化 ...

  2. iframe 随内容自适应高度

    兼容性好的 html代码: <iframe src="enterprise/enter_edit.aspx" id="mainframe" framebo ...

  3. 2018年小米高级 PHP 工程师面试题(模拟考试卷)

    1.通过哪一个函数,可以把错误转换为异常处理? A:set_error_handler B:error_reporting C:error2exception D:catch 正确答案:A 答案分析: ...

  4. java中多种方式读文件

    转自:http://www.jb51.net/article/16396.htm java中多种方式读文件 一.多种方式读文件内容. 1.按字节读取文件内容 2.按字符读取文件内容 3.按行读取文件内 ...

  5. hibernate.cfg.xml的详细解释

    <!--标准的XML文件的起始行,version='1.0'表明XML的版本,encoding='gb2312'表明XML文件的编码方式-->                    < ...

  6. Matlab画平滑曲线的两种方法

    自然状态下,用plot画的是折线,而不是平滑曲线. 有两种方法可以画平滑曲线,第一种是拟合的方法,第二种是用spcrv,其实原理应该都一样就是插值.下面是源程序,大家可以根据需要自行选择,更改拟合的参 ...

  7. RPC架构-美团,京东面试题目

    RPC(Remote Procedure Call) RPC服务 从三个角度来介绍RPC服务:分别是RPC架构,同步异步调用以及流行的RPC框架. RPC架构 先说说RPC服务的基本架构吧.允许我可耻 ...

  8. 使用Windows Live Writer拉取之前写的博客

    因为之前写的博客有错误需要修改,但是在Windows Live Writer中找了半天也没找到怎么拉取之前的博客,在[打开本地草稿]或者[打开最近使用过的日志]中,由于存储的项数有限,所以就找不到那篇 ...

  9. 命名空间(namespace)// 友元函数

    17.2.命名空间 命名空间(namespace)为防止名字冲突提供了更加可控的机制.命名空间能够划分全局命名空间,这样使用独立开发的库更加容易了.一个命名空间就是一个作用域,通过在命名空间内部定义库 ...

  10. HUAS 1483 mex(莫队算法)

    考虑莫队算法,对于区间减小的情况,可以O(1)解决.对于区间增加的情况,可能需要O(n)解决.好在数据不卡莫队. 1200ms过了. 离线+线段树 760ms过了. # include <cst ...