【BZOJ】1833 [ZJOI2010]count 数字计数
【算法】数位DP
【题解】
记忆化搜索
#include<cstdio>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
ll A[],B[],f[][],a[],p[];
ll dfs(ll* A,ll h,bool limit,bool pre)
{
if(h==)return ;
if(!limit&&f[h][]!=-&&!pre)
{
for(int i=;i<=;i++)A[i]+=f[h][i];
return f[h][];
}
int end=limit?a[h]:;ll ans=;
for(int i=;i<=end;i++)
{
if(limit&&i==end)p[i]=dfs(A,h-,,pre&(!i)),A[i]+=p[i],ans+=p[i];
else p[i]=dfs(A,h-,,pre&(!i)),A[i]+=p[i],ans+=p[i];
if(pre&(!i))A[i]-=p[i];
}
if(!limit&&!pre)
{
for(int i=;i<=;i++)f[h][i]=f[h-][i]*+p[i];
f[h][]=ans;
}
return ans;
}
void solve(ll* A,ll x)
{
if(x==){return;}
int n=;
while(x>)a[++n]=x%,x/=;
dfs(A,n,,);
}
int main()
{
ll l,r;
scanf("%lld%lld",&l,&r);
for(int i=;i<=;i++)f[i][]=-;
solve(B,l-);solve(A,r);
for(int i=;i<;i++)printf("%lld ",A[i]-B[i]);
printf("%lld\n",A[]-B[]);
return ;
}
递推:下面只考虑单一数字数量统计,其它一样。
第一步,预处理。(计数)
规定最低位为第1位,最高位为第len位。
f[i][j]表示前i位,最高位数字为j的答案数(不考虑前导零有前导零的数字只要待会再最高位附上数字就是有效的了)
f[i][j]=∑f[i-1][k]+10^(i-1)。
第二步,第len位为0。(前导零)
将所有len位为0的或数字长度不足len的数字先统计进来,ans+=∑f[i][j]+1,1<=i<=len-1,1<=j<=9。其中+1是数字0。
第三步,第len位不为0逐位确定。(限位)
强制确定len位不为0,然后加入每一位枚举到顶-1的答案就可以了。
ans+=∑f[i][j],1<=i<len,0<=j<=a[i],其中i=len时j从1开始。
还要计算当前数位的顶之后会出现的次数,为后面数字大小+1。
例如1211这个数字,整个数位DP的过程是:0,1~9,10~99,100~999,1000~1199,1200~1209,1210~1211。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,M=;
int a[M];
ll fac[M];
struct cyc{
ll a[];
}f[N][N];
cyc operator + (cyc a,cyc b){
cyc c;
for(int i=;i<=;i++)c.a[i]=a.a[i]+b.a[i];
return c;
}
cyc dp(ll num){
int len=;
cyc ans;
for(int i=;i<=;i++)ans.a[i]=;
ans.a[]=;
if(!num)return ans;
ll number=num;
while(num){
a[++len]=num%;
num/=;
}
for(int i=;i<len;i++)for(int j=;j<=;j++)ans=ans+f[i][j];
for(int i=len;i>=;i--){
for(int j=(i==len);j<a[i];j++){
ans=ans+f[i][j];
}
number%=fac[i-];
ans.a[a[i]]+=number+;
}
//for(int k=0;k<=9;k++)printf("%d ",ans.a[k]);puts("");
return ans;
}
int main(){
fac[]=;for(int i=;i<=N;i++)fac[i]=fac[i-]*;
for(int j=;j<=;j++)f[][j].a[j]=;
for(int i=;i<=N;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
f[i][j]=f[i][j]+f[i-][k];
f[i][j].a[j]+=fac[i-];
}//printf("[%d][%d]",i,j);
//for(int k=0;k<=9;k++)printf("%d ",f[i][j].a[k]);puts("");
}
}
ll A,B;scanf("%lld%lld",&A,&B);
cyc cA=dp(A-),cB=dp(B);
for(int i=;i<;i++)printf("%lld ",cB.a[i]-cA.a[i]);
printf("%lld",cB.a[]-cA.a[]);
return ;
}
【BZOJ】1833 [ZJOI2010]count 数字计数的更多相关文章
- BZOJ 1833: [ZJOI2010]count 数字计数( dp )
dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...
- [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...
- BZOJ 1833: [ZJOI2010]count 数字计数
Description 问 \([L,R]\) 中0-9的个数. Sol 数位DP. 预处理好长度为 \(i\), 最高位为 \(j\) 的数位之和. 然后从上往下计算,不要忘记往下走的同时要把高位的 ...
- bzoj 1833 [ZJOI2010]count 数字计数(数位DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1833 [题意] 统计[a,b]区间内各数位出现的次数. [思路] 设f[i][j][k ...
- BZOJ 1833 ZJOI2010 count 数字计数 数位DP
题目大意:求[a,b]间全部的整数中0~9每一个数字出现了几次 令f[i]为i位数(算前导零)中每一个数出现的次数(一定是同样的,所以仅仅记录一个即可了) 有f[i]=f[i-1]*10+10^(i- ...
- bzoj 1833: [ZJOI2010]count 数字计数【数位dp】
非典型数位dp 先预处理出f[i][j][k]表示从后往前第i位为j时k的个数,然后把答案转换为ans(r)-ans(l-1),用预处理出的f数组dp出f即可(可能也不是dp吧--) #include ...
- 1833: [ZJOI2010]count 数字计数
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2951 Solved: 1307[Submit][ ...
- 1833: [ZJOI2010]count 数字计数 - BZOJ
Description给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次.Input输入文件中仅包含一行两个整数a.b,含义如上所述.Output输出文件中包含一 ...
- 【BZOJ】1833: [ZJOI2010] count 数字计数(数位dp)
题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include < ...
随机推荐
- WPF+数据库+三层
1.计算类 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespac ...
- DDB与DIB
DB与DIB的区别是什么?觉得书上介绍的有点抽象.不容易理解.他们两者之间的区别的“物理意义” [“现实意义”]——姑且这么叫吧,呵呵!被这个问题困扰了很久,所以今天决定好好查资料总结一下,把它彻底搞 ...
- node中的__dirname
先说结论:__dirname指的是当前文件所在文件夹的绝对路径. 测试路径如下: 即 根目录/dir0.js 根目录/path1/dir1.js 根目录/paht1/path2/dir2.js 每个d ...
- 【转载】Windows下Mysql5.7开启binlog步骤及注意事项
转自:https://www.cnblogs.com/wangwust/p/6433453.html 1.查看是否开启了binlog:show binary logs; 默认情况下是不开启的. 2.开 ...
- vi/sed等遵循的搜索正则语法
转自:http://blog.csdn.net/lanxinju/article/details/5731843 一.查找 查找命令 /pattern<Enter> :向下查找patter ...
- struts如何在Action类中操作request,session
在servlet中,通过request.getparameter与setparameter来实现后端与前端jsp页面的数据交互,那么在struts中,也有几种方式来操作request,session实 ...
- try-with-resources语句
try-with-resources语句是一种声明了一种或多种资源的try语句.资源是指在程序用完了之后必须要关闭的对象.try-with-resources语句保证了每个声明了的资源在语句结束的时候 ...
- 简易js调试
1.console显示信息的命令: console.log() console.info() console.error() console.warn() 2.console信息分组 cons ...
- 当重写了 httpservlet重写了GenericServlet的init方法时候 必须显示调用GenericServlet的init方法时候 才能在别的方法(父类创建config实例) 例如 doget里面使用servletContext对象 不重写init 则可以直接使用
- 【bzoj1692】[Usaco2007 Dec]队列变换 贪心+后缀数组
题目描述 FJ打算带他的N(1 <= N <= 30,000)头奶牛去参加一年一度的“全美农场主大奖赛”.在这场比赛中,每个参赛者都必须让他的奶牛排成一列,然后领她们从裁判席前依次走过. ...