Description

过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地说,他们有P (1 <= P <= 300) 道题目要做. 他们还离开了农场并且象普通人一样找到了工作. 他们的月薪是M (1 <= M <= 1000) 元. 他们的题目是一流的难题,所以他们得找帮手.帮手们不是免费的,但是他们能保证在一个月内作出任何题目.每做一道题需要两比付款, 第一笔A_i(1 <= A_i <= M) 元在做题的那一个月初支付, 第二笔B_i元(1 <= B_i <= M)在做完后的下一个月初支付. 每一个月牛们用上一个月挣的钱来付款. 牛没有任何存款意识, 所以每个月的节余都回拿用去买糖吃掉了. 因为题目是相互关连的,它们必须按大概顺序解出. 比如,题目3必须在解题目4 之前或同一个月解出. 找出牛们做完所有题目并支付完所有款项的最短月数.

Input

* 第一行: N 和 P

* 第2...P+1行: 第i行包含A_i和B_i, 分别是做第i道题的欲先付款和完成付款.

Output

* 第一行: 牛们做完题目和付完帐目的最少月数

Sample Input

100 5
40 20
60 20
30 50
30 50
40 40
输入解释:
牛们的月薪是100元. 他们有5道题目要做, 预期付款分别为 40, 60, 30, 30,
40, 完成付款分别为 20,本20, 50, 50, 40.

Sample Output

6

HINT

这道题算是道比较经典的dp吧

f[i][j] 表示写了i道题 最后的这个月写了j道题

f[i][j]=f[i-k][z]+1 

枚举一下i j 以及f[i-j][k]的k就可以了 

注意一下初始状态以及枚举顺序和0的转移就可以了

#include<cstdio>
#include<cstring>
#include<algorithm>
using std::min;
const int M=,inf=0x3f3f3f3f;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int ans=inf,n,m,f[M][M];
int k,s1[M],s2[M];
int main(){
memset(f,0x3f,sizeof(f));
n=read(); m=read();
for(int i=;i<=m;i++){
k=read(); s1[i]=s1[i-]+k;
k=read(); s2[i]=s2[i-]+k;
}
f[][]=;f[][]=;f[][]=;
for(int k=;k<=m;k++){
for(int i=;i<=k;i++)if(s1[k]-s1[k-i]<=n)
for(int j=;j<=k-i;j++)if((s1[k]-s1[k-i])+(s2[k-i]-s2[k-i-j])<=n)
f[k][i]=std::min(f[k][i],f[k-i][j]+);
for(int i=;i<=m;i++)if(s2[k]-s2[k-i]<=n)f[k][]=min(f[k][],f[k][i]+);
}
ans=f[m][]+;
for(int i=;i<=m;i++) if(s2[m]-s2[m-i]<=n) ans=min(ans,f[m][i]+);
printf("%d\n",ans);
return ;
}

bzoj 1700: [Usaco2007 Jan]Problem Solving 解题 ——dp的更多相关文章

  1. BZOJ 1700 [Usaco2007 Jan]Problem Solving 解题(单调DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1700 [题目大意] 共有p道题目要做,每个月收入只有n元,用于付钱做题之外的部分都会吃 ...

  2. bzoj 1700: [Usaco2007 Jan]Problem Solving 解题【dp】

    很像贪心的dp啊 这个定金尾款的设定让我想起了lolita和jk制服的尾款地狱-- 设f[i][j]为从j到i的付定金的最早月份然后从f[k][j-1]转移来,两种转移f[i][j]=min(f[i] ...

  3. bzoj:1700: [Usaco2007 Jan]Problem Solving 解题

    Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地说,他们有P (1 <= P <= 300) 道题目要做. 他们还离开了农场 ...

  4. 【BZOJ】1700: [Usaco2007 Jan]Problem Solving 解题

    [题意]给定n道题,每月末发放工资m,要求从1解到n,每道题需要在当月初付费ai,下月初付费bi,多道题可以安排在同月,求最少月数. [算法]DP [题解]参考自:[bzoj1700]Problem ...

  5. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  6. [bzoj1700]: [Usaco2007 Jan]Problem Solving 解题

    不能贪心!不能贪心!不能贪心! 反正有反例(有的题目月初支付款很少,月末支付款很大,和前面的题凑到一个月的话可能导致下个月写不了= =这时放后一个月,和后面的题一起开始写可能更优) 比如: 50 44 ...

  7. BZOJ1700: [Usaco2007 Jan]Problem Solving 解题

    每月m<=1000块钱,有n<=300道题,要按顺序做,每月做题要花钱,花钱要第一个月预付下个月立即再付一次,给出预付和再付求最少几个月做完题,第一个月不做. 神奇的DP..竟没想出来.. ...

  8. bzoj 1700 Problem Solving 解题 dp

    [Usaco2007 Jan]Problem Solving 解题 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 492  Solved: 288[Sub ...

  9. 【bzoj1700】Problem Solving 解题 dp

    题目描述 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地说,他们有P (1 <= P <= 300) 道题目要做. 他们还离开了农场并且象普通人一 ...

随机推荐

  1. Android框架 与 源码结构

    一. Android 框架 Android框架层级 : Android 自下 而 上 分为 4层; -- Linux内核层; -- 各种库 和 Android运行环境层; -- 应用框架层; -- 应 ...

  2. Hadoop 版本 生态圈 MapReduce模型

    忘的差不多了, 先补概念, 然后开始搭建集群实战 ... . 一 Hadoop版本 和 生态圈 1. Hadoop版本 (1) Apache Hadoop版本介绍 Apache的开源项目开发流程 : ...

  3. JavaScript初探系列之日期对象

    时间对象是一个我们经常要用到的对象,无论是做时间输出.时间判断等操作时都与这个对象离不开.它是一个内置对象——而不是其它对象的属性,允许用户执行各种使用日期和时间的过程. 一   Date 日期对象 ...

  4. javabean的内省技术和BeanUtils的使用

    一.关于javabean javabean是固定写法的java类 书写格式为: 1)必须有无参构造函数 2)属性必须私有, 我们称为字段 3)提供标准的getter和setter 例: name 字段 ...

  5. 【MVC4升级到MVC5】ASP.Net MVC 4项目升级MVC 5的方法

    1.备份你的项目 2.从Web API升级到Web API 2,修改global.asax,将 ? 1 WebApiConfig.Register(GlobalConfiguration.Config ...

  6. 【Linux】CentOS安装redis

    CENTOS7下安装REDIS 安装完成之后使用:redis-cli命令连接,如图: 提示:/var/run/redis_6379.pid exists, process is already run ...

  7. [CLR via C#]异常和状态管理

    当CLR检测到某个正在运行的.NET应用程序处于一种特殊的正常执行顺序被打断的状态时,会生成一个异常对象来表示这个错误,并将此对象在方法调用堆栈中向上传送.如果一个程序引发了一个异常却没有处理,CLR ...

  8. mysql通过binlog恢复数据

    如果mysql不小心操作失误导致数据错误或者丢失这时候binlog起到了很大的作用 恢复有几种方式 1.按时间恢复--start-datetime   如果确定了时间点,那么按时间恢复是一个再好不过的 ...

  9. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  10. BZOJ4771 七彩树(dfs序+树上差分+主席树)

    考虑没有深度限制怎么做.显然的做法是直接转成dfs序上主席树,但如果拓展到二维变成矩形数颜色数肯定没法做到一个log. 另一种做法是利用树上差分.对于同种颜色的点,在每个点处+1,dfs序相邻点的lc ...