登山

Time Limit: 10 Sec  Memory Limit: 256 MB

Description

  恶梦是一个登山爱好者,今天他来到了黄山
  俗话说的好,不走回头路。所以在黄山,你只能往前走,或者往上走。
  并且很显然的是,当你走到山脊的时候,你不能够往上走,你只能往前走一步再往上走。
  抽象一点而言就是,你可以把黄山视为一个N * N格点图,恶梦从(0,0)开始出发,要走到 (N,N)。
  当他走到位置(x,y)的时候,它可以往(x + 1,y),或(x,y+1)走。
  并且当他走到(x,x)的时候,由于他已经处在了山脊上,所以他不能够往(x,x+1)方向上走。
  当恶梦兴致勃勃准备开始爬山的时候,他的同伴告诉他,黄山由于年久失修,有一些位置出现了大坑,不能走。
  恶梦觉得更刺激了,但他想先知道他能有多少种方式走到黄山顶。
  由于这个数字很大,所以你只需要将答案对10^9 + 7取模输出即可。

Input

  第一行包括两个整数N,C,分别表示你可以把黄山视作一个N * N的格点图,并且黄山上面有C个位置出现了大坑。
  接下来的C行,每行包括两个整数X,Y,表示X,Y这个位置不能走。
  保证X>=Y,也就是说(X,Y)必然在山上。
  保证这C个点互不相同。

Output

  输出只有一个整数Ans,表示恶梦爬上山顶的路径数对10^9+7取模的值。

Sample Input

  5 2
  5 0
  1 1

Sample Output

  27

HINT

  对于100%的数据,保证N<=100000,C<=1000。
  保证对于(0,0),(N,N)不存在障碍点。

Solution

  这显然是一道数学题,结合DP,我们令 f[i] 表示不经过其它障碍点,首先经过障碍点 i 的方案数。

  那么显然有:f[i] = Ways(0,0 -> i) - f[j] * Ways(i -> j)

  问题就转化为了,怎样求出满足不超过直线y=x+1从一点走向另外一点的方案数。

  

  

  

  所以Ways = ((x1, y1) -> (x2, y2)) - ((x1, y1) -> (y2-1, x2+1))

  统计答案只要加入一个(n, n)f里面计算即可。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = 1e9 + ; int n, m;
int x, y;
int fac[ONE], inv[ONE];
int f[ONE]; struct point
{
int x, y;
}a[ONE];
bool cmp(const point &a, const point &b)
{
if(a.x != b.x) return a.x < b.x;
return a.y < b.y;
} int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int Quickpow(int a, int b)
{
int res = ;
while(b)
{
if(b & ) res = (s64)res * a % MOD;
a = (s64)a * a % MOD;
b >>= ;
}
return res;
} void Deal_first()
{
fac[] = ;
for(int i = ; i <= * n; i++)
fac[i] = (s64)fac[i - ] * i % MOD;
inv[ * n] = Quickpow(fac[ * n], MOD - );
for(int i = * n - ; i >= ; i--)
inv[i] = (s64)inv[i + ] * (i + ) % MOD;
} int C(int n, int m)
{
if(n < || m < ) return ;
return (s64)fac[n] * inv[m] % MOD * inv[n - m] % MOD;
} void Modit(int &a)
{
if(a < ) a += MOD;
if(a >= MOD) a -= MOD;
} int Ways(point a, point b)
{
if(n < || m < ) return ;
return C(b.y - a.y + b.x - a.x, b.y - a.y);
} int Getit(point a, point b)
{
return Ways(a, b) - Ways(a, (point){b.y - , b.x + });
} int main()
{
n = get(); m = get();
Deal_first(); for(int i = ; i <= m; i++)
a[i].x = get(), a[i].y = get(); a[++m] = (point){n, n};
sort(a + , a + m + , cmp); for(int i = ; i <= m; i++)
{
Modit(f[i] = Getit((point){, }, a[i]));
for(int j = ; j < i; j++)
Modit(f[i] -= (s64)f[j] * Getit(a[j], a[i]) % MOD);
} printf("%d", f[m]);
}

【Foreign】登山 [DP][数学]的更多相关文章

  1. # E. Mahmoud and Ehab and the xor-MST dp/数学+找规律+xor

    E. Mahmoud and Ehab and the xor-MST dp/数学/找规律 题意 给出一个完全图的阶数n(1e18),点由0---n-1编号,边的权则为编号间的异或,问最小生成树是多少 ...

  2. Codeforces Beta Round #2B(dp+数学)

    贡献了一列WA.. 数学很神奇啊 这个题的关键是怎么才能算尾0的个数 只能相乘 可以想一下所有一位数相乘 除0之外,只有2和5相乘才能得到0 当然那些本身带0的多位数 里面肯定含有多少尾0 就含有多少 ...

  3. zznu 1255 数字统计(数位DP, 数学方法)

    最近在学数位DP, 感觉还是满有收获的! 做了几个题之后想起来自己OJ上曾经做的一道题,以前是用数学方法写的,现在改用数位DP来写了一遍. 题目: 1255: 数字统计 时间限制: 1 Sec  内存 ...

  4. hdu4035 Maze 【期望dp + 数学】

    题目链接 BZOJ4035 题解 神题啊...orz 不过网上题解好难看,数学推导不写\(Latex\)怎么看..[Latex中毒晚期] 我们由题当然能很快写出\(dp\)方程 设\(f[i]\)表示 ...

  5. ZOJ3872 Beauty of Array---规律 | DP| 数学能力

    传送门ZOJ 3872 Beauty of Array Time Limit: 2 Seconds      Memory Limit: 65536 KB Edward has an array A  ...

  6. [CSP-S模拟测试]:题(DP+数学)

    题目描述 出个题就好了.这就是出题人没有写题目背景的原因.你在平面直角坐标系上.你一开始位于$(0,0)$.每次可以在上/下/左/右四个方向中选一个走一步.即:从$(x,y)$走到$(x,y+1),( ...

  7. [CSP-S模拟测试]:小奇的矩阵(matrix)(DP+数学)

    题目背景 小奇总是在数学课上思考奇怪的问题. 题目描述 给定一个$n\times m$的矩阵,矩阵中的每个元素$a_{i,j}$为正整数.接下来规定:    $1.$合法的路径初始从矩阵左上角出发,每 ...

  8. HDU 4599 Dice (概率DP+数学+快速幂)

    题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n ...

  9. HDU 4489 The King’s Ups and Downs (DP+数学计数)

    题意:给你n个身高高低不同的士兵.问你把他们按照波浪状排列(高低高或低高低)有多少方法数. 析:这是一个DP题是很明显的,因为你暴力的话,一定会超时,应该在第15个时,就过不去了,所以这是一个DP计数 ...

随机推荐

  1. Spark GraphX 2

    顶点:VertexRDD   边:EdgeRDD.Edge.EdgeDirection   Triplet:EdgeTriplet   存储:PartitionStrategy 通常的存储方式有两种: ...

  2. C++与C#数据类型对应关系总结

    https://blog.csdn.net/u010159842/article/details/51720458 添加: 1.c++参数含有&,c#也需要用ref关键字. 2.在c++中声明 ...

  3. C语言 内存分配 地址 指针 数组 参数 实例解析

    . Android源码看的鸭梨大啊, 补一下C语言基础 ... . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/detai ...

  4. 由作业题引发对C++引用的一些思考

    首先分析一段代码: #include <bits/c++config.h> #include <ostream> #include <iostream> #incl ...

  5. 福州大学软工1816 | K班 第一次作业

    (一)回想一下你初入大学时对计算机专业的畅想 (1)当初你是如何做出选择计算机专业的决定的? 本身对于计算机感兴趣.高考完之后翻了书,对于物理数学等基础学科兴趣不大,对金融等商科几乎毫无了解,再加上当 ...

  6. lintcode-182-删除数字

    182-删除数字 给出一个字符串 A, 表示一个 n 位正整数, 删除其中 k 位数字, 使得剩余的数字仍然按照原来的顺序排列产生一个新的正整数. 找到删除 k 个数字之后的最小正整数. N < ...

  7. ubuntu 安装xdebug

    Add XDebug to Ubuntu 14.04 Submitted by Wilbur on Tue, 06/17/2014 - 12:49pm It's pretty easy to add ...

  8. [C/C++] 友元函数和友元类

    A---友元函数: class Data{ public: ... friend int f(int &m);//友元函数 ... } 友元函数是可以直接访问类的私有成员的非成员函数.它是定义 ...

  9. ADO.NET基础必备之SqlCommand.Execute三方法

    SqlCommand.ExecuteNonQuery 方法   对连接执行 Transact-SQL 语句并返回受影响的行数. ――语法: public override int ExecuteNon ...

  10. 【ADO.NET】ADO.NET知识点

    ADO.NET 是一组向 .NET 程序员公开数据访问服务的类.提供了对各种关系数据.XML 和应用程序数据的访问. 所有的数据访问类位于System.Data.dll中.System.Data包含了 ...