【BZOJ3998】弦论 [SAM]
弦论
Time Limit: 10 Sec Memory Limit: 256 MB
[Submit][Status][Discuss]
Description
对于一个给定长度为N的字符串,求它的第K小子串是什么。
Input
第一行是一个仅由小写英文字母构成的字符串S。
第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个。
T=1则表示不同位置的相同子串算作多个。K的意义如题所述。
Output
输出仅一行,为一个数字串,为第K小的子串。如果子串数目不足K个,则输出-1
Sample Input
0 3
Sample Output
HINT
N<=5*10^5, T<2, K<=10^9
Solution
首先我们先构造一个后缀自动机,然后分类讨论:
1. 如果T=0,点权为1。为什么呢?一个点有一个Right集合,一个Right集合可以表达多个子串 ,然后我们一个点 -> 另外一个点 其实不止一条边,我们每条边涵盖了一个信息,意味着 这个点->(走这条边)->到达了下一个点 通过这条边得到的那个新子串,而这多个新子串构成了一个 新的点。所以一条合法的路径,就表达了一个子串。
2. 如果T=1,点权为Right集合大小。Right集合是结束位置的合集,那么Right集合大小就表示这条路径表达的这个子串出现了多少次。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = 2e6+; int n,T,k;
char ch[]; inline int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} struct SAM
{
int v[], q[ONE], num[ONE], size[ONE];
int a[ONE][], len[ONE], fa[ONE], New;
int last, cnt; SAM() {last = cnt = ;}
void Add(int c)
{
int x=last, New=last=++cnt;
len[New] = len[x] + ;
num[New] = ;
while(x && !a[x][c]) a[x][c] = New, x = fa[x];
if(!x) {fa[New] = ; return;} int q = a[x][c];
if(len[x] + == len[q]) fa[New] = q;
else
{
int Nq = ++cnt; len[Nq] = len[x] + ;
memcpy(a[Nq], a[q], sizeof(a[q]));
fa[Nq] = fa[q];
fa[New] = fa[q] = Nq;
while(a[x][c] == q) a[x][c] = Nq, x = fa[x];
}
} void Update()
{
for(int i=;i<=cnt;i++) v[len[i]]++;
for(int i=;i<=n;i++) v[i] += v[i-];
for(int i=cnt;i>=;i--) q[v[len[i]]--] = i; for(int i=cnt; i>=; i--)
{
int x = q[i];
if(!T) num[x] = ; else num[fa[x]] += num[x];
}
num[] = ; for(int i=cnt; i>=; i--)
{
int x = q[i];
size[x] = num[x];
for(int j=; j<=; j++)
size[x] += size[a[x][j]];
}
} void Dfs(int u,int k)
{
if(k <= num[u]) return;
k -= num[u];
for(int j=; j<=; j++)
if(a[u][j])
{
if(k > size[a[u][j]]) k -= size[a[u][j]];
else
{
printf("%c",j+'a'-);
Dfs(a[u][j], k);
return;
}
}
}
}S; int main()
{
scanf("%s",ch+); n = strlen(ch+);
T = get(); k = get();
for(int i=;i<=n;i++) S.Add(ch[i]-'a'+); S.Update(); if(k > S.size[]) printf("-1");
else S.Dfs(, k); }
【BZOJ3998】弦论 [SAM]的更多相关文章
- BZOJ3998 弦论 【SAM】k小子串
BZOJ3998 弦论 给一个字符串,问其第\(K\)小字串是什么 两种形式 1.不同起始位置的相同串只算一次 2.不同起始位置的相同串各算一次 首先建\(SAM\) 所有串的数量就是\(SAM\)中 ...
- bzoj3998: [TJOI2015]弦论(SAM+dfs)
3998: [TJOI2015]弦论 题目:传送门 题解: SAM的入门题目(很好的复习了SAM并加强Right集合的使用) 其实对于第K小的字符串直接从root开始一通DFS就好,因为son边是直接 ...
- BZOJ3998:[TJOI2015]弦论(SAM)
Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个. ...
- 【BZOJ 3998】 3998: [TJOI2015]弦论 (SAM )
3998: [TJOI2015]弦论 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2627 Solved: 881 Description 对于一 ...
- luogu P3975 [TJOI2015]弦论 SAM
luogu P3975 [TJOI2015]弦论 链接 bzoj 思路 建出sam. 子串算多个的,统计preant tree的子树大小,否则就是大小为1 然后再统计sam的节点能走到多少串. 然后就 ...
- 弦论(tjoi2015,bzoj3998)(sam(后缀自动机))
对于一个给定长度为\(N\)的字符串,求它的第\(K\)小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串\(S\) 第二行为两个整数\(T\)和\(K\),\(T\)为0则表示不同 ...
- bzoj3998 [TJOI2015]弦论(SAM)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3998 [题意] 询问排名第k的子串是谁,0代表相同子串不同位置算作相同,1代表相同子串 ...
- 【BZOJ3998】弦论(后缀自动机)
[BZOJ3998]弦论(后缀自动机) 题面 BZOJ 题解 这题应该很简单 构建出\(SAM\)后 求出每个点往后还能构建出几个串 按照拓扑序\(dp\)一些就好了 然后就是第\(k\)大,随便搞一 ...
- 【BZOJ3998】[TJOI2015]弦论 后缀自动机
[BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...
随机推荐
- 20172305 2018-2019-1 《Java软件结构与数据结构》第一周学习总结
20172305 2018-2019-1 <Java软件结构与数据结构>第一周学习总结 教材学习内容总结 本周内容主要为书第一章和第二章的内容: 第一章 软件质量: 正确性(软件达到特定需 ...
- 浏览器中event.srcElement和event.target的兼容性问题
在IE下,event对象有srcElement属性,但是没有target属性:Firefox下,even对象有target属性,但是没有srcElement属性.. 解决方法:使用obj(obj = ...
- arm交叉编译器gnueabi、none-eabi、arm-eabi、gnueabihf的区别
转自 https://www.cnblogs.com/linuxbo/p/4297680.html 命名规则 交叉编译工具链的命名规则为:arch [-vendor] [-os] [-(gnu)eab ...
- getGeneratedKeys自动获取主键的方法
public class Demo { public static void main(String[] args) { try { String sql="insert into pers ...
- [C/C++] 结构体存储问题
64位操作系统,不同类型变量对应的字节数为: char : 1个字节 char*(即指针变量) : 8个字节 //32位占4个字节 short int : 2个字节 int : 4个字节 unsign ...
- 为什么 MongoDB (索引)使用B-树而 Mysql 使用 B+树
B-树由来 定义:B-树是一类树,包括B-树.B+树.B*树等,是一棵自平衡的搜索树,它类似普通的平衡二叉树,不同的一点是B-树允许每个节点有更多的子节点.B-树是专门为外部存储器设计的,如磁盘,它对 ...
- RT-thread-2.0.1移植(基于STM32F4xx)
1.将下载的rt-thread-2.0.1解压后,得到如下图所示的文件列表. 在bsp目录下可以找到stm32f40x文件夹,这文件夹里面包括了库函数,其他芯片平台的文件夹统统删掉.在libcpu下, ...
- WC2017 划水记
Day 0 (2.2) 一寒假没有好好写题....于是晚上打了人生第一场codeforces,写了Div2三道水题就弃疗了23333333 Day 1 (2.3) 从德州高铁站坐小火车G57去绍兴 ...
- 整合常用功能的JS小组件库-v1.0
function Alex() { //给予video.js的页面滚动到视频元素范围内自动播放/出范围暂停播放-----01 this.video_autoplay = function (box) ...
- 分享几款常用的API/文档浏览器
1.Dash 支持平台:Mac iOS 官网:https://kapeli.com/dash 2.Zeal 支持平台:Linux Windows 官网:https://zealdocs.org/ G ...