HDU 5690——All X——————【快速幂 | 循环节】
All X
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 879 Accepted Submission(s): 421
F(x,m) mod k ≡ c
每组测试数据占一行,包含四个数字x,m,k,c
1≤x≤9
1≤m≤1010
0≤c<k≤10,000
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式。
1 3 5 1
3 5 99 69
No
Case #2:
Yes
Case #3:
Yes
对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是”No”,而第二组测试数据中满足如上公式,所以答案是 “Yes”。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
#pragma comment(linker, "/STACK:102400000,102400000")
const int maxn = 1e5 + 300;
const LL INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
LL vis[maxn], a[maxn];
int main(){
LL x, m, k, c;
int T, cas = 0;
scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld%lld",&x,&m,&k,&c);
memset(vis,0,sizeof(vis));
int nn = 0, le = 0, st = 1;
LL cc;
LL n = 0;
for(int i = 1; ; i++){
n = n*10;
n = n + x;
n = n%k;
if(vis[n]){
cc = n;
break;
}else{
vis[n] = 1;
nn++;
a[nn] = n;
}
}
for(int i = 1; i <= nn; i++){
if(a[i] == cc){
le = nn+1 - i;
st = i;
break;
}
}
int flag = 0;
if(m < st){
if(a[m] == c){
flag = 1;
}
}else{
m -= st;
m %= le;
if(a[st+m] == c){
flag = 1;
}
}
printf("Case #%d:\n",++cas);
if(flag) puts("Yes");
else puts("No");
}
return 0;
} /*
55
3 5 99 69 3 4 4 2
3 8 4 2 2 8 3 2 */
解题思路:数学方法。
转自http://m.blog.csdn.net/article/details?id=51471639
这个数要mod k ,那这个数应该怎么表示呢?
就这样转化了,然后10^m可以通过快速幂解决,但是很明显,除以9操作怎么办,除法取模,余数是会改变的,逆元?但是9和k不一定互质,且k也不一定是质数,所以扩展欧几里得和费马小定理都不能用了,束手无策
好吧,这里提供一种小方法
就这样经过几步转化,我求d不需要进行除法取模了,那我上面的问题不就解决了?对的。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
#pragma comment(linker, "/STACK:102400000,102400000")
const int maxn = 1e5 + 300;
const LL INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
LL quick(LL x,LL n,LL p){
if(n == 0) return 1;
LL ret = 1;
while(n){
if(n&1) ret = ret*x % p;
n = n >> 1;
x = x*x % p;
}
return ret;
}
int main(){
LL x, m, k, c;
int T, cas = 0;
scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld%lld",&x,&m,&k,&c);
k*=9;
LL ans = quick(10,m,k);
ans = (ans - 1 + k) % k;
ans /= 9;
k /= 9;
ans = ans * x % k;
bool flag = 0;
if(ans == c)
flag = 1;
printf("Case #%d:\n",++cas);
if(flag) puts("Yes");
else puts("No");
}
return 0;
}
HDU 5690——All X——————【快速幂 | 循环节】的更多相关文章
- HDU——4291A Short problem(矩阵快速幂+循环节)
A Short problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 2016"百度之星" - 初赛(Astar Round2A)--HDU 5690 |数学转化+快速幂
Sample Input 3 1 3 5 2 1 3 5 1 3 5 99 69 Sample Output Case #1: No Case #2: Yes Case #3: Yes Hint ...
- hdu 4291 矩阵幂 循环节
http://acm.hdu.edu.cn/showproblem.php?pid=4291 凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙: g(g(g(n))) mod 109 ...
- HDU 1061 Rightmost Digit --- 快速幂取模
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...
- HDU 3977 斐波那契循环节
这类型的题目其实没什么意思..知道怎么做后,就有固定套路了..而且感觉这东西要出的很难的话,有这种方法解常数会比较大吧..所以一般最多套一些比较简单的直接可以暴力求循环节的题目了.. /** @Dat ...
- HDU.2640 Queuing (矩阵快速幂)
HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...
- HDU 5667 构造矩阵快速幂
HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...
- HDU 6185 Covering 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...
- hdu 3746 Cyclic Nacklace(kmp最小循环节)
Problem Description CC always becomes very depressed at the end of this month, he has checked his cr ...
随机推荐
- 解决:The APR based Apache Tomcat Native library which allows optimal performance in production...
tomcat日志apr报错引发的基于Tomcat Native加速Tomcat性能 tomact服务启动报错日志如下:息: The APR based Apache Tomcat Native lib ...
- SCPO2015 小凸玩矩阵
题目链接:戳我 二分答案+最大流. 看到第K大的数的最小值是多少,我们想到二分,把他转化为最大数最小问题--二分一个数x,如果有>=n-k+1个数不比它大,那么它就应当不大于当前数,否则应当大于 ...
- 6.iptables常用规则
开启ip段192.168.1.0/24端的80口 开启ip段211.123.16.123/24端ip段的80口 # iptables -I INPUT -p tcp --dport 80 -j DRO ...
- java操作AWS S3一些坑记录
1,aws sdk jar版本不一致问题 一开始我在pom.xml中只配置了如下aws-java-sdk-s3 <!-- https://mvnrepository.com/artifact/c ...
- ArchLinux 下 OpenSSH 高级运用
00x0.相关介绍 OpenSSH(OpenBSD Secure Shell)使用 SSH 通过计算机网络加密通信的实现. 它是替换由 SSH Communications Security 所提供的 ...
- python学习笔记之使用threading模块实现多线程(转)
综述 Python这门解释性语言也有专门的线程模型,Python虚拟机使用GIL(Global Interpreter Lock,全局解释器锁)来互斥线程对共享资源的访问,但暂时无法利用多处理器的优势 ...
- MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk. Commands that may modify the data set are disabled
初试redis,删除或者修改值的时候报的错,解决方式是运行命令: 127.0.0.1:6379> config set stop-writes-on-bgsave-error no
- Ionic 2 :如何实现列表滑动删除按钮
http://blog.csdn.net/h254532699/article/details/54382123 使用Ionic这种框架伟大的地方在于用户界面元素默认准备好了,意味着你可以设计更好的a ...
- docker安装mysql57
提升应用交付效率 1. 支持服务发现,避免服务重启迁移 IP 变更带来影响:2. 支持微服务化,降低代码维护及重构复杂度,适应快速变化的业务需求. 快速响应业务变化 1. 灵活水平扩展,应对业务量的骤 ...
- css中的block与none
*{ display:none; } div{ display:block; } div 会正常显示粗来吗?不会 因为*代表所有元素,包括div的父级元素html,body 父级元素都不显示了,子元素 ...