All X

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 879    Accepted Submission(s): 421

Problem Description
F(x,m) 代表一个全是由数字x组成的m位数字。请计算,以下式子是否成立:

F(x,m) mod k ≡ c

 
Input
第一行一个整数T,表示T组数据。
每组测试数据占一行,包含四个数字x,m,k,c

1≤x≤9

1≤m≤1010

0≤c<k≤10,000

 
Output
对于每组数据,输出两行:
第一行输出:"Case #i:"。i代表第i组测试数据。
第二行输出“Yes” 或者 “No”,代表四个数字,是否能够满足题目中给的公式。
 
Sample Input
3
1 3 5 2
1 3 5 1
3 5 99 69
 
Sample Output
Case #1:
No
Case #2:
Yes
Case #3:
Yes

Hint

对于第一组测试数据:111 mod 5 = 1,公式不成立,所以答案是”No”,而第二组测试数据中满足如上公式,所以答案是 “Yes”。

 
Source
 
 
解题思路:打表找循环节。
 
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
#pragma comment(linker, "/STACK:102400000,102400000")
const int maxn = 1e5 + 300;
const LL INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
LL vis[maxn], a[maxn];
int main(){
LL x, m, k, c;
int T, cas = 0;
scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld%lld",&x,&m,&k,&c);
memset(vis,0,sizeof(vis));
int nn = 0, le = 0, st = 1;
LL cc;
LL n = 0;
for(int i = 1; ; i++){
n = n*10;
n = n + x;
n = n%k;
if(vis[n]){
cc = n;
break;
}else{
vis[n] = 1;
nn++;
a[nn] = n;
}
}
for(int i = 1; i <= nn; i++){
if(a[i] == cc){
le = nn+1 - i;
st = i;
break;
}
}
int flag = 0;
if(m < st){
if(a[m] == c){
flag = 1;
}
}else{
m -= st;
m %= le;
if(a[st+m] == c){
flag = 1;
}
}
printf("Case #%d:\n",++cas);
if(flag) puts("Yes");
else puts("No");
}
return 0;
} /*
55
3 5 99 69 3 4 4 2
3 8 4 2 2 8 3 2 */

  

解题思路:数学方法。

转自http://m.blog.csdn.net/article/details?id=51471639

这个数要mod k ,那这个数应该怎么表示呢?

就这样转化了,然后10^m可以通过快速幂解决,但是很明显,除以9操作怎么办,除法取模,余数是会改变的,逆元?但是9和k不一定互质,且k也不一定是质数,所以扩展欧几里得和费马小定理都不能用了,束手无策

好吧,这里提供一种小方法

就这样经过几步转化,我求d不需要进行除法取模了,那我上面的问题不就解决了?对的。

#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<math.h>
#include<string>
#include<iostream>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<set>
using namespace std;
typedef long long LL;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
#pragma comment(linker, "/STACK:102400000,102400000")
const int maxn = 1e5 + 300;
const LL INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
LL quick(LL x,LL n,LL p){
if(n == 0) return 1;
LL ret = 1;
while(n){
if(n&1) ret = ret*x % p;
n = n >> 1;
x = x*x % p;
}
return ret;
}
int main(){
LL x, m, k, c;
int T, cas = 0;
scanf("%d",&T);
while(T--){
scanf("%lld%lld%lld%lld",&x,&m,&k,&c);
k*=9;
LL ans = quick(10,m,k);
ans = (ans - 1 + k) % k;
ans /= 9;
k /= 9;
ans = ans * x % k;
bool flag = 0;
if(ans == c)
flag = 1;
printf("Case #%d:\n",++cas);
if(flag) puts("Yes");
else puts("No");
}
return 0;
}

  

HDU 5690——All X——————【快速幂 | 循环节】的更多相关文章

  1. HDU——4291A Short problem(矩阵快速幂+循环节)

    A Short problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. 2016"百度之星" - 初赛(Astar Round2A)--HDU 5690 |数学转化+快速幂

    Sample Input 3 1 3 5 2 1 3 5 1 3 5 99 69   Sample Output Case #1: No Case #2: Yes Case #3: Yes Hint ...

  3. hdu 4291 矩阵幂 循环节

    http://acm.hdu.edu.cn/showproblem.php?pid=4291 凡是取模的都有循环节-----常数有,矩阵也有,并且矩阵的更奇妙: g(g(g(n))) mod 109  ...

  4. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  5. HDU 3977 斐波那契循环节

    这类型的题目其实没什么意思..知道怎么做后,就有固定套路了..而且感觉这东西要出的很难的话,有这种方法解常数会比较大吧..所以一般最多套一些比较简单的直接可以暴力求循环节的题目了.. /** @Dat ...

  6. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  7. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  8. HDU 6185 Covering 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...

  9. hdu 3746 Cyclic Nacklace(kmp最小循环节)

    Problem Description CC always becomes very depressed at the end of this month, he has checked his cr ...

随机推荐

  1. 解决:The APR based Apache Tomcat Native library which allows optimal performance in production...

    tomcat日志apr报错引发的基于Tomcat Native加速Tomcat性能 tomact服务启动报错日志如下:息: The APR based Apache Tomcat Native lib ...

  2. SCPO2015 小凸玩矩阵

    题目链接:戳我 二分答案+最大流. 看到第K大的数的最小值是多少,我们想到二分,把他转化为最大数最小问题--二分一个数x,如果有>=n-k+1个数不比它大,那么它就应当不大于当前数,否则应当大于 ...

  3. 6.iptables常用规则

    开启ip段192.168.1.0/24端的80口 开启ip段211.123.16.123/24端ip段的80口 # iptables -I INPUT -p tcp --dport 80 -j DRO ...

  4. java操作AWS S3一些坑记录

    1,aws sdk jar版本不一致问题 一开始我在pom.xml中只配置了如下aws-java-sdk-s3 <!-- https://mvnrepository.com/artifact/c ...

  5. ArchLinux 下 OpenSSH 高级运用

    00x0.相关介绍 OpenSSH(OpenBSD Secure Shell)使用 SSH 通过计算机网络加密通信的实现. 它是替换由 SSH Communications Security 所提供的 ...

  6. python学习笔记之使用threading模块实现多线程(转)

    综述 Python这门解释性语言也有专门的线程模型,Python虚拟机使用GIL(Global Interpreter Lock,全局解释器锁)来互斥线程对共享资源的访问,但暂时无法利用多处理器的优势 ...

  7. MISCONF Redis is configured to save RDB snapshots, but is currently not able to persist on disk. Commands that may modify the data set are disabled

    初试redis,删除或者修改值的时候报的错,解决方式是运行命令: 127.0.0.1:6379> config set stop-writes-on-bgsave-error no

  8. Ionic 2 :如何实现列表滑动删除按钮

    http://blog.csdn.net/h254532699/article/details/54382123 使用Ionic这种框架伟大的地方在于用户界面元素默认准备好了,意味着你可以设计更好的a ...

  9. docker安装mysql57

    提升应用交付效率 1. 支持服务发现,避免服务重启迁移 IP 变更带来影响:2. 支持微服务化,降低代码维护及重构复杂度,适应快速变化的业务需求. 快速响应业务变化 1. 灵活水平扩展,应对业务量的骤 ...

  10. css中的block与none

    *{ display:none; } div{ display:block; } div 会正常显示粗来吗?不会 因为*代表所有元素,包括div的父级元素html,body 父级元素都不显示了,子元素 ...