题目

给出一个由AGTC组成的字符串\(S\),长度为\(n\),对于每个\(i\in [0,n]\),问有多少个长度为\(m\),仅含有AGTC的字符串\(T\)使得\(S\)与\(T\)的最长公共子串长度为\(i\)。\((n\le 15,m\le 1000)\)

Sample Input

GTC
10

Sample Output

1
22783
528340
497452

分析

这是一个经典的问题,解法称为dp套dp。这一类问题要求解的是有多少种输入可以使得一个dp的最终结果为一个特定值。在这道题中的表现就是,求有多少个字符串\(T\)使得求解lcs的dp的最终结果为\(i\)。对于这类问题,一般的方法是,对于内部dp(这里的lcs)观察它的求解过程,把dp的过程状态压缩,放在外层dp中。

观察lcs的求解过程:

\[lcs[i][j]=max
\begin{cases}
lcs[i-1][j-1]+1 & \text{if t[i]=s[j]} \\
lcs[i-1][j] \\
lcs[i][j-1]
\end{cases}
\]

注意到这个转移的过程中,一行只和上一行有关,而且同一行中相邻两位最多差1,所以我们可以把一行差分,状态压缩。即令\(f[i][j]\)表示枚举到第\(i\)个字符,这时候内层dp状态为\(j\)的情况数。那么可以直接得到计算方程:

\[\begin{aligned}
f[i][trans(j,k)]+=f[i-1][j]
\end{aligned}
\]

其中\(trans(j,k)\)表示从\(j\)状态加一个字母\(k\)转移到的状态。比如说,\(s=\text{'ACT'},j=010\),由于差分过,所以原来的状态是\(011\),即当前的匹配是C。接下来加入一个T,那么状态会变成\(012\),压缩后变为\(011\)。注意到这个trans是固定的,所以可以每次预处理。

预处理复杂度为\(O(kn2^n)\),外层dp复杂度为\(O(km2^n)\)。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long giant;
const int maxn=15;
const int maxm=1<<maxn;
const int maxa=1e3+1;
const int q=1e9+7;
const char sta[]=" ACGT";
char s[maxn+1];
int t[maxm][5],f[maxa+2][maxm+2],ans[maxn+2],n,a[maxn+2];
int change(char c) {
for (int i=1;i<=4;++i) if (c==sta[i]) return i;
return 5;
}
void add(int &x,int y) {
x+=y;
if (x>q) x-=q;
}
int count(int x) {
int ret=0;
for (int i=0;i<maxn;++i) ret+=((x>>i)&1);
return ret;
}
int tf[2][maxn+2];
int trans(int sit,int c) {
memset(tf,0,sizeof tf);
for (int i=0;i<n;++i) tf[0][i+1]=tf[0][i]+((sit>>i)&1);
for (int i=1;i<=n;++i) {
int tmp=0;
if (a[i]==c) tmp=max(tmp,tf[0][i-1]+1);
tmp=max(tmp,max(tf[0][i],tf[1][i-1]));
tf[1][i]=tmp;
}
int ret=0;
for (int i=0;i<n;++i) ret+=(1<<i)*(tf[1][i+1]-tf[1][i]);
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
freopen("my.out","w",stdout);
#endif
int T;
scanf("%d",&T);
while (T--) {
memset(ans,0,sizeof ans);
memset(f,0,sizeof f);
memset(a,0,sizeof a);
scanf("%s",s+1);
n=strlen(s+1);
int m;
scanf("%d",&m);
f[0][0]=1;
for (int i=1;i<=n;++i) a[i]=change(s[i]);
for (int j=0;j<(1<<n);++j) for (int k=1;k<=4;++k) t[j][k]=trans(j,k);
for (int i=1;i<=m;++i) {
for (int j=0;j<(1<<n);++j) {
for (int k=1;k<=4;++k) {
int s=t[j][k];
add(f[i][s],f[i-1][j]);
}
}
}
for (int i=0;i<(1<<n);++i) add(ans[count(i)],f[m][i]);
for (int i=0;i<=n;++i) printf("%d\n",ans[i]);
}
return 0;
}

bzoj3864-hdu4899-Hero meet devil的更多相关文章

  1. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  2. HDU4899 Hero meet devil DP套DP

    陈老师的题QwQ 原题链接 题目大意 有两个字符串\(S\)和\(T\)(都只能由'A','C','G','T'这四个字符组成),\(S\)已知\(T\)未知,还知道\(S\)的长度为\(m\).求满 ...

  3. hdu4899 Hero meet devil

    题目链接 题意 给出一个长度字符串\(T\),其中只包含四种字符\((A,C,G,T)\),需要找一个字符串\(S\),使得\(S\)的长度为\(m\),问\(S\)和\(T\)的\(lcs\)为\( ...

  4. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  5. BZOJ3864 & HDU4899:Hero meet devil——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3864 http://acm.hdu.edu.cn/showproblem.php?pid=4899 ...

  6. bzoj3864: Hero meet devil

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

  7. BZOJ3864: Hero meet devil(dp套dp)

    Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 397  Solved: 206[Submit][Status][Discuss] Description ...

  8. BZOJ3864: Hero meet devil【dp of dp】

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

  9. bzoj千题计划241:bzoj3864: Hero meet devil

    http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...

  10. HDU 4899 Hero meet devil(状压DP)(2014 Multi-University Training Contest 4)

    Problem Description There is an old country and the king fell in love with a devil. The devil always ...

随机推荐

  1. MySQL入门第三天(下)——存储过程与存储引擎

    一.存储过程 1.简介 原始的SQL执行的流程: 通过存储过程,便可以简化以上流程,那么存储过程是什么,如何进行性能提高呢? 是什么? 存储过程是可编程的函数,在数据库中创建并保存,可以由SQL语句和 ...

  2. 20145202马超《网络对抗》Exp8 Web基础

    1.本实践的具体要求有: (1).Web前端HTML(1分) 能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTML. (2).Web前端javas ...

  3. Android APP架构设计——MVP的使用示例

    0. 前言 为了更好地进行移动端架构设计,我们最常用的就是MVC.MVP和MVVM,作为三个最耳熟能详的三大架构,应用可谓非常广泛.对于这三种架构设计以及优缺点已经在Android APP架构设计-- ...

  4. 网络流Edmonds-Karp算法入门

    今天自习课没事干,看书自学了一下网络流中的EK算法.(求最大流) 设s为源点,t为汇点,C为容量矩阵,F为流量矩阵,f为最大流量. 1.初始化F,f 2.用BFS在残量网络中找到一条从s到t的最短增广 ...

  5. LeetCode: 61. Rotate List(Medium)

    1. 原题链接 https://leetcode.com/problems/rotate-list/description/ 2. 题目要求 给出一个链表的第一个结点head和正整数k,然后将从右侧开 ...

  6. 阅读笔记《JavaScript语言精粹》

    阅读笔记<JavaScript语言精粹> 对象 1.检索属性 使用[]和. 2.引用传递 JavaScript的简单数据类型包括数字.字符串.布尔值.null值和undefined值.其它 ...

  7. MySQL高级-查询截取分析

    一.如何分析 1.观察.至少跑1天,看看生产的慢SQL情况. 2.开启慢查询日志,设置阙值比如超过5秒钟的就是慢SQL,并将它抓取出来. 3.explain + 慢SQL分析 4.show profi ...

  8. 仿京东淘宝商品详情页属性选择js效果

    在网上找了好久发现都不符合要求就自己摸索写了一个,用到了linq.js这个linq to js 扩展,不然用纯JS遍历json查询要死人啊 demo:http://123.207.28.46:8086 ...

  9. uvaoj 489 - Hangman Judge(逻辑+写代码能力)

    https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  10. 给大家推荐:五个Python小项目,Github上的人气很高的

    1.深度学习框架 Pytorch https://github.com/pytorch/pytorch PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级 ...