bzoj3864-hdu4899-Hero meet devil
题目
给出一个由AGTC组成的字符串\(S\),长度为\(n\),对于每个\(i\in [0,n]\),问有多少个长度为\(m\),仅含有AGTC的字符串\(T\)使得\(S\)与\(T\)的最长公共子串长度为\(i\)。\((n\le 15,m\le 1000)\)
Sample Input
GTC
10
Sample Output
1
22783
528340
497452
分析
这是一个经典的问题,解法称为dp套dp。这一类问题要求解的是有多少种输入可以使得一个dp的最终结果为一个特定值。在这道题中的表现就是,求有多少个字符串\(T\)使得求解lcs的dp的最终结果为\(i\)。对于这类问题,一般的方法是,对于内部dp(这里的lcs)观察它的求解过程,把dp的过程状态压缩,放在外层dp中。
观察lcs的求解过程:
\begin{cases}
lcs[i-1][j-1]+1 & \text{if t[i]=s[j]} \\
lcs[i-1][j] \\
lcs[i][j-1]
\end{cases}
\]
注意到这个转移的过程中,一行只和上一行有关,而且同一行中相邻两位最多差1,所以我们可以把一行差分,状态压缩。即令\(f[i][j]\)表示枚举到第\(i\)个字符,这时候内层dp状态为\(j\)的情况数。那么可以直接得到计算方程:
f[i][trans(j,k)]+=f[i-1][j]
\end{aligned}
\]
其中\(trans(j,k)\)表示从\(j\)状态加一个字母\(k\)转移到的状态。比如说,\(s=\text{'ACT'},j=010\),由于差分过,所以原来的状态是\(011\),即当前的匹配是C。接下来加入一个T,那么状态会变成\(012\),压缩后变为\(011\)。注意到这个trans是固定的,所以可以每次预处理。
预处理复杂度为\(O(kn2^n)\),外层dp复杂度为\(O(km2^n)\)。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long giant;
const int maxn=15;
const int maxm=1<<maxn;
const int maxa=1e3+1;
const int q=1e9+7;
const char sta[]=" ACGT";
char s[maxn+1];
int t[maxm][5],f[maxa+2][maxm+2],ans[maxn+2],n,a[maxn+2];
int change(char c) {
for (int i=1;i<=4;++i) if (c==sta[i]) return i;
return 5;
}
void add(int &x,int y) {
x+=y;
if (x>q) x-=q;
}
int count(int x) {
int ret=0;
for (int i=0;i<maxn;++i) ret+=((x>>i)&1);
return ret;
}
int tf[2][maxn+2];
int trans(int sit,int c) {
memset(tf,0,sizeof tf);
for (int i=0;i<n;++i) tf[0][i+1]=tf[0][i]+((sit>>i)&1);
for (int i=1;i<=n;++i) {
int tmp=0;
if (a[i]==c) tmp=max(tmp,tf[0][i-1]+1);
tmp=max(tmp,max(tf[0][i],tf[1][i-1]));
tf[1][i]=tmp;
}
int ret=0;
for (int i=0;i<n;++i) ret+=(1<<i)*(tf[1][i+1]-tf[1][i]);
return ret;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
freopen("my.out","w",stdout);
#endif
int T;
scanf("%d",&T);
while (T--) {
memset(ans,0,sizeof ans);
memset(f,0,sizeof f);
memset(a,0,sizeof a);
scanf("%s",s+1);
n=strlen(s+1);
int m;
scanf("%d",&m);
f[0][0]=1;
for (int i=1;i<=n;++i) a[i]=change(s[i]);
for (int j=0;j<(1<<n);++j) for (int k=1;k<=4;++k) t[j][k]=trans(j,k);
for (int i=1;i<=m;++i) {
for (int j=0;j<(1<<n);++j) {
for (int k=1;k<=4;++k) {
int s=t[j][k];
add(f[i][s],f[i-1][j]);
}
}
}
for (int i=0;i<(1<<n);++i) add(ans[count(i)],f[m][i]);
for (int i=0;i<=n;++i) printf("%d\n",ans[i]);
}
return 0;
}
bzoj3864-hdu4899-Hero meet devil的更多相关文章
- 【BZOJ3864】Hero meet devil DP套DP
[BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...
- HDU4899 Hero meet devil DP套DP
陈老师的题QwQ 原题链接 题目大意 有两个字符串\(S\)和\(T\)(都只能由'A','C','G','T'这四个字符组成),\(S\)已知\(T\)未知,还知道\(S\)的长度为\(m\).求满 ...
- hdu4899 Hero meet devil
题目链接 题意 给出一个长度字符串\(T\),其中只包含四种字符\((A,C,G,T)\),需要找一个字符串\(S\),使得\(S\)的长度为\(m\),问\(S\)和\(T\)的\(lcs\)为\( ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- BZOJ3864 & HDU4899:Hero meet devil——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3864 http://acm.hdu.edu.cn/showproblem.php?pid=4899 ...
- bzoj3864: Hero meet devil
Description There is an old country and the king fell in love with a devil. The devil always asks th ...
- BZOJ3864: Hero meet devil(dp套dp)
Time Limit: 8 Sec Memory Limit: 128 MBSubmit: 397 Solved: 206[Submit][Status][Discuss] Description ...
- BZOJ3864: Hero meet devil【dp of dp】
Description There is an old country and the king fell in love with a devil. The devil always asks th ...
- bzoj千题计划241:bzoj3864: Hero meet devil
http://www.lydsy.com/JudgeOnline/problem.php?id=3864 题意: 给你一个DNA序列,求有多少个长度为m的DNA序列和给定序列的LCS为0,1,2... ...
- HDU 4899 Hero meet devil(状压DP)(2014 Multi-University Training Contest 4)
Problem Description There is an old country and the king fell in love with a devil. The devil always ...
随机推荐
- python--模块之time,datetime时间模块
time: 表示时间的三种方式:时间戳.格式化的时间字符串.元组时间戳是计算机能够识别的时间:时间字符串是我们能够看懂的时间:元组是用来操作时间: 导入时间模块import time 1,时间戳(ti ...
- linux 网络编程 1---(基本概念)
1.TCP和UDP协议 共同点:同为传输层协议 不同点: TCP:有连接,可靠 UPD 无连接,不保证可靠 TCP(即传输控制协议): 是一种面向连接的传输层协议,它是能提供高可靠性通信(即,数据无误 ...
- WPF程序,运行时,结束时,要运行的操作(自动保存,检查单程序)
/// <summary> /// App.xaml 的交互逻辑 /// </summary> public partial class App : Application { ...
- geoserver中WMS服务详细说明
官方geoserver中WMS服务中几种操作的API的详细说明地址: http://docs.geoserver.org/stable/en/user/services/wms/reference.h ...
- Docker - 常用命令集
启动容器 docker run -d -p 58080:8080 -p 58000:8000 --name mytomcat1.0 -v /root/webapps/:/opt/apache-tomc ...
- react-native android 初始化问题
最近开始接触rn,官方起手,装了一堆工具,然后启动项目的时候出现了一堆问题,这里针对我遇到的一些问题提供一些解决方案. 本人开发环境mac,在启动ios的时候没啥大问题,可以直接启动,这里提示一点,因 ...
- Java开发工程师(Web方向) - 01.Java Web开发入门 - 第4章.Maven
第4章--Maven Maven实战 Java Web应用的部署: 手动式: 编译:javac -cp $CATALINA_HOME/lib/servlet-api.jar web-inf/class ...
- 使用pycharm软件配置数据库可视化
必须品: pycharm软件,专业版最好自带就有,社区版就需要安装下插件. 专业版直接会在右边的编辑框浮动,直接点开就可以配置. 如图所示,点开就可以配置相应的数据库, 点开配置完毕就可以使用了. 还 ...
- java对json文件的操作
第一步:通过FileReader读取json文件第二步:使用BufferReader,先通过I/O读取一定大小的数据缓存到数组中,然后再从数组取出数据.第三步:用一个字符串把每次传来的数据处理后写到新 ...
- 基础数据类型-dict
字典Dictinary是一种无序可变容器,字典中键与值之间用“:”分隔,而与另一个键值对之间用","分隔,整个字典包含在{}内: dict1 = {key1:value1, key ...