题目大意:给出一张有向图,保证任何时候边都是从编号大的向编号小连。两个操作:

  1. $1\;l\;r:$表示若编号在区间$[l,r]$内的点被染色了,问至少还需要染多少个点才可以使得整张图被染色。一个点会被染色的要求是:要么直接被染色,要么它所连向的点中至少一个被染色
  2. $2\;l\;r\;x:$表示编号在区间$[l,r]$中的所有点都向$x$连一条边,保证$x<l$

题解:发现这张图是一个$DAG$,然后只要把所有出度为$0$的点染色就一定可以把所有点染色。

于是就记录每个点是否出度为$0$,询问是区间$[1,l)\cup(r,n]$中出度为$0$的点的个数,修改就把区间$[l,r]$中出度为$0$的点改为非$0$。可以用线段树维护

卡点:

C++ Code:

#include <cstdio>
#include <cctype>
namespace std {
struct istream {
#define M (1 << 24 | 3)
char buf[M], *ch = buf - 1;
inline istream() {
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
#endif
fread(buf, 1, M, stdin);
}
inline istream& operator >> (int &x) {
while (isspace(*++ch));
for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
return *this;
}
#undef M
} cin;
struct ostream {
#define M (1 << 23 | 3)
char buf[M], *ch = buf - 1;
inline ostream& operator << (int x) {
if (!x) {
*++ch = '0';
return *this;
}
static int S[20], *top; top = S;
while (x) {
*++top = x % 10 ^ 48;
x /= 10;
}
for (; top != S; --top) *++ch = *top;
return *this;
}
inline ostream& operator << (const char x) { *++ch = x; return *this; }
inline ~ostream() {
#ifndef ONLINE_JUDGE
freopen("output.txt", "w", stdout);
#endif
fwrite(buf, 1, ch - buf + 1, stdout);
}
#undef M
} cout;
} #define maxn 300010
int n, m;
bool notice[maxn]; namespace SgT {
bool tg[maxn << 2];
int V[maxn << 2];
void build(int rt, int l, int r) {
if (l == r) {
V[rt] = !notice[l];
return ;
}
int mid = l + r >> 1;
build(rt << 1, l, mid), build(rt << 1 | 1, mid + 1, r);
V[rt] = V[rt << 1] + V[rt << 1 | 1];
} int L, R;
inline void pushdown(int rt) {
V[rt << 1] = V[rt << 1 | 1] = 0;
tg[rt << 1] = tg[rt << 1 | 1] = true;
tg[rt] = false;
}
void __modify(const int rt, const int l, const int r) {
if (L <= l && R >= r) {
V[rt] = 0;
tg[rt] = true;
return ;
}
if (tg[rt]) pushdown(rt);
const int mid = l + r >> 1;
if (L <= mid) __modify(rt << 1, l, mid);
if (R > mid) __modify(rt << 1 | 1, mid + 1, r);
V[rt] = V[rt << 1] + V[rt << 1 | 1];
}
void modify(const int __L, const int __R) {
L = __L, R = __R;
__modify(1, 1, n);
} int res;
void __query(const int rt, const int l, const int r) {
if (L <= l && R >= r) {
res += V[rt];
return ;
}
if (tg[rt]) pushdown(rt);
const int mid = l + r >> 1;
if (L <= mid) __query(rt << 1, l, mid);
if (R > mid) __query(rt << 1 | 1, mid + 1, r);
}
int query(const int __L, const int __R) {
if (__L > __R) return 0;
L = __L, R = __R, res = 0;
__query(1, 1, n);
return res;
}
} int main() {
std::cin >> n >> m;
for (int i = 1, k; i <= n; ++i) {
std::cin >> k;
for (int j = 0, x; j < k; ++j) std::cin >> x, notice[x] = true;
}
SgT::build(1, 1, n);
while (m --> 0) {
static int op, l, r, x;
std::cin >> op >> l >> r;
if (op == 1) std::cout << SgT::query(1, l - 1) + SgT::query(r + 1, n) << '\n';
else std::cin >> x, SgT::modify(l, r);
}
return 0;
}

  

[洛谷P5166]xtq的口令的更多相关文章

  1. [洛谷P1709] 隐藏的口令

    问题描述 有时候程序员有很奇怪的方法来隐藏他们的口令.Binny会选择一个字符串S(由N个小写字母组成,5<=N<=5,000,000),然后他把S顺时针绕成一个圈,每次取一个做开头字母并 ...

  2. [洛谷P5169]xtq的异或和

    题目大意:给你一张$n(n\leqslant10^5)$个点$m(m\leqslant3\times10^5)$条边的无向图,每条边有一个权值,$q(q\leqslant2^{18})$次询问,每次询 ...

  3. P5166 xtq的口令

    传送门 这题要是搞懂在干什么其实不难(虽然某个花了几个小时才搞明白的家伙似乎没资格这么说--) 假设所有人都没有听到老师的命令,我们从左到右考虑,对于当前的人,如果它没有观察者,那么肯定要让它听到老师 ...

  4. [洛谷P1709] [USACO5.5]隐藏口令Hidden Password

    洛谷题目链接:[USACO5.5]隐藏口令Hidden Password 题目描述 有时候程序员有很奇怪的方法来隐藏他们的口令.Binny会选择一个字符串S(由N个小写字母组成,5<=N< ...

  5. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  6. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  7. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  8. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

  9. 洛谷P1710 地铁涨价

    P1710 地铁涨价 51通过 339提交 题目提供者洛谷OnlineJudge 标签O2优化云端评测2 难度提高+/省选- 提交  讨论  题解 最新讨论 求教:为什么只有40分 数组大小一定要开够 ...

随机推荐

  1. vim 安装

    Ubuntu 16.04 下 Vim安装及配置 默认已经安装了VIM-tiny linuxidc@linuxidc:~$ locate vi | grep 'vi$' |xargs ls -al lr ...

  2. 基于阿里云服务器Linux系统安装配置Redis

    一.Redis简介 Redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(有 ...

  3. Python常见的脚本汇总

    1.冒泡排序 lis = [56,12,1,8,354,10,100,34,56,7,23,456,234,-58] def sortport(): for i in range(len(lis)-1 ...

  4. git基础(1)

    一.获取git仓库(两种方法)1.现有目录初始化 git init目录有文件(非空文件)进行跟踪执行:git add+文件名提交:git commit -m(提交信息说明) 2.克隆现有代码仓库的代码 ...

  5. darknet 识别获取结果

    在examples/darknet.c文件中若使用detect命令可以看到调用了test_detector. ... else if (0 == strcmp(argv[1], "detec ...

  6. 为什么说session依赖cookie,以及cookie的常用知识

    session的用法 session在Flask中通常用做设置某些页面的权限,比如某些页面必须要登录才可以看到,登录的信息或标志就放到session中.它的使用过程如下: 在整个flask工程的启动文 ...

  7. 【template、import、include】微信小程序:模板(template)、引用(import、include)说明

    模板(template): 定义模板 <template name="[String]"> <!-- 模板代码 --> <view> <t ...

  8. leetcode-组合总数III(回溯)

    组合总和 III 找出所有相加之和为 n 的 k 个数的组合.组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字. 说明: 所有数字都是正整数. 解集不能包含重复的组合.  示例 ...

  9. Java中二进制数与整型之间的转换

    import java.io.*; public class Test{ /** * 二进制与整型之间的转换 * @param args * @throws IOException */ public ...

  10. 安卓客户端浏览器ajax注意

    这两天被一个bug搞疯了,就是公司安卓app上我负责的网页死活不进ajax,一开始我用的是post方式提交的,但是参数那一栏没写,直接把参数写在url上了,后来老大跟我说post不写参数会出问题,后来 ...