https://www.luogu.org/problemnew/show/P4364#sub

https://www.lydsy.com/JudgeOnline/problem.php?id=5249

Konano接到了一个任务,他需要给正在制作中的游戏《IIIDX》安排曲目的解锁顺序。游戏内共有n首曲目,每首曲目都会有一个难度d,游戏内第i首曲目会在玩家Pass第trunc(i/k)首曲目后解锁(x为下取整符号)若trunc(i/k)=0,则说明这首曲目无需解锁。举个例子:当k=2时,第1首曲目是无需解锁的(trunc(1/2)=0),第7首曲目需要玩家Pass第trunc(7/2)=3首曲目才会被解锁。Konano的工作,便是安排这些曲目的顺序,使得每次解锁出的曲子的难度不低于作为条件需要玩家通关的曲子的难度,即使得确定顺序后的曲目的难度对于每个i满足Di≥Dtrunc(i/k)。

智商好题。

当时在考场上就写的55分贪心,之后也举出过反例证明无法贪掉d有重复的点,结果凉凉。

但其实和贪心差不多,我们先对d从大到小排序,则对于每个靠前的点来说,它在合法态下尽可能取最靠左的d,而当d相同时它尽可能靠右。

这个位置可以用二分得到,至于合法就用线段树维护当前点左边还可以取多少点即可。

PS:bzoj卡精度。

#include<cstdio>
#include<cmath>
#include<vector>
#include<iostream>
#include<stack>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
typedef double dl;
const int N=5e5+;
const int INF=1e9;
const dl eps=1e-;
inline int read(){
int x=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*w;
}
int n,d[N],tr[N*],lz[N*],cnt[N],size[N],fa[N],ans[N];
dl k;
inline bool cmp(int a,int b){return a>b;}
inline void upt(int a){tr[a]=min(tr[a<<],tr[a<<|]);}
inline void push(int a){
if(!lz[a])return;
lz[a<<]+=lz[a];lz[a<<|]+=lz[a];
tr[a<<]+=lz[a];tr[a<<|]+=lz[a];
lz[a]=;
}
void build(int a,int l,int r){
if(l==r){
tr[a]=l;
return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
upt(a);
}
void mdy(int a,int l,int r,int l1,int r1,int w){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
tr[a]+=w;lz[a]+=w;
return;
}
push(a);
int mid=(l+r)>>;
mdy(a<<,l,mid,l1,r1,w);mdy(a<<|,mid+,r,l1,r1,w);
upt(a);
}
int query(int a,int l,int r,int x){
if(l==r)return tr[a]>=x?l:l+;
push(a);
int mid=(l+r)>>;
if(x>tr[a<<|])return query(a<<|,mid+,r,x);
return query(a<<,l,mid,x);
}
int main(){
scanf("%d%lf",&n,&k);
for(int i=;i<=n;i++)d[i]=read();
sort(d+,d+n+,cmp);
for(int i=n;i>=;i--){
if(d[i]==d[i+])cnt[i]=cnt[i+]+;
else cnt[i]=;
fa[i]=(int)((dl)i/k+eps);size[i]++;
size[fa[i]]+=size[i];
}
build(,,n);
for(int i=;i<=n;i++){
if(fa[i]&&fa[i]!=fa[i-]){
mdy(,,n,ans[fa[i]],n,size[fa[i]]-);
}
int x=query(,,n,size[i]);
int t=x;x+=cnt[x];cnt[t]--;
ans[i]=x;
mdy(,,n,ans[i],n,-size[i]);
}
for(int i=;i<=n;i++)printf("%d ",d[ans[i]]);
puts("");
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ5249:[九省联考2018]IIIDX——题解的更多相关文章

  1. [BZOJ5249][九省联考2018]IIIDX(线段树)

    5249: [2018多省省队联测]IIIDX Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 32  Solved: 17[Submit][Statu ...

  2. [BZOJ5249][九省联考2018]IIIDX:线段树+贪心

    分析 GXZlegend orz 构造出一组合法的解并不是难事,但是我们需要输出的是字典序最大的解. 字典序最大有另一种理解方式,就是让越小的数尽量越靠后. 我们从树的根结点出发,从1开始填数,构造出 ...

  3. [luogu] P4364 [九省联考2018]IIIDX(贪心)

    P4364 [九省联考2018]IIIDX 题目背景 Osu 听过没?那是Konano 最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在,他在世界知名游戏公司KONMAI ...

  4. [九省联考2018]IIIDX

    题目描述 这一天,Konano接到了一个任务,他需要给正在制作中的游戏<IIIDX>安排曲目的解锁顺序.游戏内共有n首曲目 ,每首曲目都会有一个难度d,游戏内第i首曲目会在玩家Pass第t ...

  5. 洛谷 4364 [九省联考2018]IIIDX——“预留”的思路

    题目:https://www.luogu.org/problemnew/show/P4364 原来想了一个错误的思路,就是这样: solve( cr , l , r ) 表示 cr 为根的子树填 [ ...

  6. 洛谷P4364 [九省联考2018]IIIDX 【线段树】

    题目 [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在 ,他在世界知名游戏公司KONMAI内工作,离他的梦想也越来越近了.这款 ...

  7. [luogu]P4364 [九省联考2018]IIIDX

    题目背景 Osu 听过没?那是Konano 最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在,他在世界知名游戏公司KONMAI 内工作,离他的梦想也越来越近了. 这款音乐 ...

  8. [九省联考2018]IIIDX 贪心 线段树

    ~~~题面~~~ 题解: 一开始翻网上题解看了好久都没看懂,感觉很多人都讲得不太详细,所以导致一些细节的地方看不懂,所以这里就写详细一点吧,如果有不对的or不懂的可以发评论在下面. 首先有一个比较明显 ...

  9. 洛谷P4364 [九省联考2018]IIIDX(线段树)

    传送门 题解看得……很……迷? 因为取完一个数后,它的子树中只能取权值小于等于它的数.我们先把权值从大到小排序,然后记$a_i$为他左边(包括自己)所有取完他还能取的数的个数.那么当取完一个点$x$的 ...

随机推荐

  1. Android事件分发机制浅析(1)

    本文来自网易云社区 作者:孙有军 事件机制是Android中一个比较复杂且重要的知识点,比如你想自定义拦截事件,或者某系组件中嵌套了其他布局,往往会出现这样那样的事件冲突,坑爹啊!!事件主要涵盖onT ...

  2. Spark性能优化--数据倾斜调优与shuffle调优

    一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特 ...

  3. 【转】Oracle 如何找回已经删除了的表记录

    有的时候我们不小心把数据库表(emp)中重要的记录给删除了,怎么给找回来了,看下面这个例子你就会明白. 某一天,10点钟的时候,张三一不小心给数据库表emp的一条重要记录给删除了并且还提交了,此时也没 ...

  4. InnoDB锁冲突案例演示(续)

      Preface       I've demontstrated several InnoDB locking cases in my previous blog.I'm gonna do the ...

  5. TW实习日记:第16天

    前端的样式bug实在是太太太莫名其妙了,尤其是封装好的组件,一层套一层的,根本不知道是哪一层出了问题...除了改bug就是做新功能,真想吐槽一下这个项目的留言板,根本没人会用吧...这功能实在是太老旧 ...

  6. Eclipse上安装Activiti插件

    今天我们来讲下如何在Eclipse上安装Activiti插件,以后我们要用这个插件来画流程设计图: 这个插件名字是:Activiti BPMN 2.0 designer 具体使用,可以参考官方用户指南 ...

  7. 【转载】appium 操作汇总

    '''.appium api第二弹 锋利的python,这是初稿,2015/1/5 如有错误的地方,请同学们进行留言,我会及时予以修改,尽量整合一份ok的api 作者:Mads Spiral QQ:7 ...

  8. phantomjs抛出IOException

    使用phantomjs对网页进行截图遇到的问题 问题描述: 使用的phantomjs版本:phantomjs-2.1.1-windows 使用的截图js文件,\phantomjs-2.1.1-wind ...

  9. Kali信息收集工具-dimtry

    帮助文档 -s和-e参数需要用到google搜索 1.获取whois主机ip信息 2.扫描端口,根据banner信息判断服务  

  10. jquery中的$(document).ready()、JavaScript中的window.onload()以及body中的onload()、DomContentLoaded()区别

    $().ready().$(handler).$(document).ready(handler)均不是原生JS中的,都是jQuery中封装的方法.这些事件在当页面的dom节点加载完毕后就执行,无需等 ...