题目描述

Kiana最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y=ax2+bx的曲线,其中a,b是Kiana指定的参数,且必须满足a<0。

当小鸟落回地面(即x轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi)。

如果某只小鸟的飞行轨迹经过了(xi,yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过(xi,yi),那么这只小鸟飞行的全过程就不会对第i只小猪产生任何影响。

例如,若两只小猪分别位于(1,3)和(3,3),Kiana可以选择发射一只飞行轨迹为y=-x2+4x的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

输入

第一行包含一个正整数T,表示游戏的关卡总数。

下面依次输入这T个关卡的信息。每个关卡第一行包含两个非负整数n,m,分别表示该关卡中的小猪数量和Kiana输入的神秘指令类型。接下来的n行中,第i行包含两个正实数(xi,yi),表示第i只小猪坐标为(xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果m=0,表示Kiana输入了一个没有任何作用的指令。
如果m=1,则这个关卡将会满足:至多用n/3+1只小鸟即可消灭所有小猪。
如果m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少n/3只小猪。

保证1<=n<=18,0<=m<=2,0<xi,yi<10,输入中的实数均保留到小数点后两位。

输出

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量

样例输入

2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00

样例输出

1 1


题解

状态压缩dp

这题也真是够坑。。。

考试时写了搜索,毕竟14年就没出搜索。然而出乎意料,这题竟然是16年的第二道dp,

还是考试前一直觉得不会考的一种dp。。。

f[i]表示状态为i的猪全部打掉需要的最少次数。

易推出伪代码f[i]=min(f[i],f[i^A]+1),A为每次打的集合。

为什么说是伪代码?因为A很难确定。

枚举子集的话,时间复杂度O(3^n),TLE。

所以不能枚举子集。

枚举点?先枚举情况,然后枚举两个点,再处理其余点,时间复杂度O(2^n*n^3),85分。

于是我们想到初始化。

本着能打则打的贪心原则,可以先把点j和点k所在抛物线上所有点存起来,状态转移时,

集合A即为i&g[j][k],省略了一重循环,AC。

当然还是有更好的优化(见代码)。

由于打的顺序对结果没有影响,所以可以默认先打标号较小的小鸟,这样时间复杂度会更低。

然而最坑的是精度问题。

不加精度肯定会跪,至于跪多少,考试时自己没加精度得了0分。。。

精度太低也不行,亲测1e-4 90分,1e-5 95分。

所以精度很重要,最好是1e-6,不会被卡,可以过。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define eps 1e-6
using namespace std;
double x[20] , y[20];
int f[262150] , g[20][20];
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(g , 0 , sizeof(g));
int n , m , i , j , k;
double a , b;
scanf("%d%d" , &n , &m);
for(i = 0 ; i < n ; i ++ )
scanf("%lf%lf" , &x[i] , &y[i]);
for(i = 0 ; i < n ; i ++ )
{
for(j = 0 ; j < n ; j ++ )
{
if(i != j)
{
a = (x[j] * y[i] - x[i] * y[j]) / (x[i] * x[j] * (x[i] - x[j]));
b = (x[j] * x[j] * y[i] - x[i] * x[i] * y[j]) / (x[i] * x[j] * (x[j] - x[i]));
if(a <= -eps)
for(k = 0 ; k < n ; k ++ )
if(fabs(a * x[k] * x[k] + b * x[k] - y[k]) <= eps)
g[i][j] |= 1 << k;
}
}
}
f[0] = 0;
for(i = 1 ; i < (1 << n) ; i ++ )
{
for(j = 0 ; j < n ; j ++ )
if((1 << j) & i)
break;
f[i] = f[i ^ (1 << j)] + 1;
for(k = 0 ; k < n ; k ++ )
if(k != j && (1 << k) & i)
f[i] = min(f[i] , f[i ^ (i & g[j][k])] + 1);
}
printf("%d\n" , f[(1 << n) - 1]);
}
return 0;
}

[NOIP2016]愤怒的小鸟 状态压缩dp的更多相关文章

  1. 状态压缩dp相关

    状态压缩dp 状态压缩是设计dp状态的一种方式. 当普通的dp状态维数很多(或者说维数与输入数据有关),但每一维总 量很少是,可以将多维状态压缩为一维来记录. 这种题目最明显的特征就是: 都存在某一给 ...

  2. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  3. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  4. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  5. HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP

    题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...

  6. DP大作战—状态压缩dp

    题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...

  7. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

  8. BZOJ-1226 学校食堂Dining 状态压缩DP

    1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...

  9. Marriage Ceremonies(状态压缩dp)

     Marriage Ceremonies Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

随机推荐

  1. BZOJ2761_不重复数字_KEY

    题目传送门 Map水过(或set也行). code: /************************************************************** Problem: ...

  2. 洛谷P4136 谁能赢呢?

    题目描述 小明和小红经常玩一个博弈游戏.给定一个n×n的棋盘,一个石头被放在棋盘的左上角.他们轮流移动石头.每一回合,选手只能把石头向上,下,左,右四个方向移动一格,并且要求移动到的格子之前不能被访问 ...

  3. 厦门Uber优步司机奖励政策(12月14日到12月20日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. wamp报错SCREAM:Error suppression ignored for

    问题:SCREAM:Error suppression ignored for 解决: 在php.ini最下面加入scream.enabled = Off http://stackoverflow.c ...

  5. JavaSE打开windows文件

    第一个参数表示用什么程序打开,第二个参数表示文件的路径 例一: //用记事本打开d:/test.txt文件 Process p = java.lang.Runtime.getRuntime().exe ...

  6. 【费元星原创】一键安装Hadoo2.7.6 集群完全分布式脚本-完美解决

    有Bug 欢迎反馈,我不烦:feiyuanxing@gmail.com 1 #!/bin/bash #@author:feiyuanxing [既然笨到家,就要努力到家] #@date:2017-01 ...

  7. 180615-精度计算BigDecimal

    文章链接:https://liuyueyi.github.io/hexblog/2018/06/15/180615-精度计算BigDecimal/ 180615-精度计算BigDecimal 目前接触 ...

  8. 怎样下载Firefox与Chrome浏览器驱动

    在浏览器地址栏输入https://www.seleniumhq.org/ 打开Selenium官网 下载Firefox浏览器驱动 解压到本地 下载Chrome浏览器驱动 解压到本地 把这2个驱动放到P ...

  9. Java JDK5.0新特性

    JDK5.0新特性 虽然JDK已经到了1.8 但是1.5(5.0)的变化是最大的 1. 增强for循环 foreach语句 foreach简化了迭代器 作用: 对存储对象的容器进行迭代 (数组, co ...

  10. Linux搭建mysql、apache、php服务总结

    本随笔文章,由个人博客(鸟不拉屎)转移至博客园 写于:2018 年 04 月 22 日 原地址:https://niaobulashi.com/archives/linux-mysql-apache- ...