[NOIP2016]愤怒的小鸟 状态压缩dp
题目描述
Kiana最近沉迷于一款神奇的游戏无法自拔。
简单来说,这款游戏是在一个平面上进行的。
有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y=ax2+bx的曲线,其中a,b是Kiana指定的参数,且必须满足a<0。
当小鸟落回地面(即x轴)时,它就会瞬间消失。
在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi)。
如果某只小鸟的飞行轨迹经过了(xi,yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
如果一只小鸟的飞行轨迹没有经过(xi,yi),那么这只小鸟飞行的全过程就不会对第i只小猪产生任何影响。
例如,若两只小猪分别位于(1,3)和(3,3),Kiana可以选择发射一只飞行轨迹为y=-x2+4x的小鸟,这样两只小猪就会被这只小鸟一起消灭。
而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。
这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。
假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。
输入
第一行包含一个正整数T,表示游戏的关卡总数。
下面依次输入这T个关卡的信息。每个关卡第一行包含两个非负整数n,m,分别表示该关卡中的小猪数量和Kiana输入的神秘指令类型。接下来的n行中,第i行包含两个正实数(xi,yi),表示第i只小猪坐标为(xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。
如果m=0,表示Kiana输入了一个没有任何作用的指令。
如果m=1,则这个关卡将会满足:至多用n/3+1只小鸟即可消灭所有小猪。
如果m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少n/3只小猪。
保证1<=n<=18,0<=m<=2,0<xi,yi<10,输入中的实数均保留到小数点后两位。
输出
对每个关卡依次输出一行答案。
输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量
样例输入
2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00
样例输出
1 1
题解
状态压缩dp
这题也真是够坑。。。
考试时写了搜索,毕竟14年就没出搜索。然而出乎意料,这题竟然是16年的第二道dp,
还是考试前一直觉得不会考的一种dp。。。
f[i]表示状态为i的猪全部打掉需要的最少次数。
易推出伪代码f[i]=min(f[i],f[i^A]+1),A为每次打的集合。
为什么说是伪代码?因为A很难确定。
枚举子集的话,时间复杂度O(3^n),TLE。
所以不能枚举子集。
枚举点?先枚举情况,然后枚举两个点,再处理其余点,时间复杂度O(2^n*n^3),85分。
于是我们想到初始化。
本着能打则打的贪心原则,可以先把点j和点k所在抛物线上所有点存起来,状态转移时,
集合A即为i&g[j][k],省略了一重循环,AC。
当然还是有更好的优化(见代码)。
由于打的顺序对结果没有影响,所以可以默认先打标号较小的小鸟,这样时间复杂度会更低。
然而最坑的是精度问题。
不加精度肯定会跪,至于跪多少,考试时自己没加精度得了0分。。。
精度太低也不行,亲测1e-4 90分,1e-5 95分。
所以精度很重要,最好是1e-6,不会被卡,可以过。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define eps 1e-6
using namespace std;
double x[20] , y[20];
int f[262150] , g[20][20];
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(g , 0 , sizeof(g));
int n , m , i , j , k;
double a , b;
scanf("%d%d" , &n , &m);
for(i = 0 ; i < n ; i ++ )
scanf("%lf%lf" , &x[i] , &y[i]);
for(i = 0 ; i < n ; i ++ )
{
for(j = 0 ; j < n ; j ++ )
{
if(i != j)
{
a = (x[j] * y[i] - x[i] * y[j]) / (x[i] * x[j] * (x[i] - x[j]));
b = (x[j] * x[j] * y[i] - x[i] * x[i] * y[j]) / (x[i] * x[j] * (x[j] - x[i]));
if(a <= -eps)
for(k = 0 ; k < n ; k ++ )
if(fabs(a * x[k] * x[k] + b * x[k] - y[k]) <= eps)
g[i][j] |= 1 << k;
}
}
}
f[0] = 0;
for(i = 1 ; i < (1 << n) ; i ++ )
{
for(j = 0 ; j < n ; j ++ )
if((1 << j) & i)
break;
f[i] = f[i ^ (1 << j)] + 1;
for(k = 0 ; k < n ; k ++ )
if(k != j && (1 << k) & i)
f[i] = min(f[i] , f[i ^ (i & g[j][k])] + 1);
}
printf("%d\n" , f[(1 << n) - 1]);
}
return 0;
}
[NOIP2016]愤怒的小鸟 状态压缩dp的更多相关文章
- 状态压缩dp相关
状态压缩dp 状态压缩是设计dp状态的一种方式. 当普通的dp状态维数很多(或者说维数与输入数据有关),但每一维总 量很少是,可以将多维状态压缩为一维来记录. 这种题目最明显的特征就是: 都存在某一给 ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
- Marriage Ceremonies(状态压缩dp)
Marriage Ceremonies Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
随机推荐
- Installing python-ldap in Ubuntu
These are the steps to be followed to install python-ldap in Ubuntu. At first, sudo apt-get install ...
- CF 600 E. Lomsat gelral
E. Lomsat gelral http://codeforces.com/contest/600/problem/E 题意: 求每个子树内出现次数最多的颜色(如果最多的颜色出现次数相同,将颜色编号 ...
- MySQL连接本地数据库时报1045错误的解决方法
navicat for MySQL 连接本地数据库出现1045错误 如下图: 说明连接mysql时数据库密码错误,需要修改密码后才可解决问题: 解决步骤如下: .首先打开命令行:开始->运行 ...
- mysql新手进阶03
当年忠贞为国酬,何曾怕断头? 如今天下红遍,江山靠谁守? 业未就,身躯倦,鬓已秋. 你我之辈,忍将夙愿,付与东流? 数据库结构如下: 仓库(仓库号, 城市, 面积) 订购单(职工号, 供应商号, 订购 ...
- 学好三角学(函数) — SWIFT和JAVASCRIPT游戏开发的必备技能 iFIERO.com
不论是使用哪种平台进行开发,三角学在游戏当中都被广泛的使用,因此,小编iFERO认为,三角学是必须得掌握的技能之一. 游戏图片由 摘自 Razeware LLC 先以Javascript为例 一.角度 ...
- 【WXS】变量定义保留标识符
以下字符不能作为变量名称定义: delete void typeof null undefined NaN Infinity var if else true false require this f ...
- js for循环实例
1.求1-100的寄数和? //2.奇数求和 var ppt=0 for(var i=1;i<=100;i+=2){ ppt+=i } 2.求1-100的偶数和 var num=0 for(va ...
- * 197. Permutation Index【LintCode by java】
Description Given a permutation which contains no repeated number, find its index in all the permuta ...
- python中的迭代器与生成器
迭代器 迭代器的引入 假如我现在有一个列表l=['a','b','c','d','e'],我想取列表中的内容,那么有几种方式? 1.通过索引取值 ,如了l[0],l[1] 2.通过for循环取值 fo ...
- AVL树和伸展树 -数据结构(C语言实现)
读数据结构与算法分析 AVL树 带有平衡条件的二叉树,通常要求每颗树的左右子树深度差<=1 可以将破坏平衡的插入操作分为四种,最后通过旋转恢复平衡 破坏平衡的插入方式 描述 恢复平衡旋转方式 L ...