【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述
Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows are conducting another one of their strangeprotests, so each cow i is holding up a sign with an integer A_i(-10,000 <= A_i <= 10,000).
FJ knows the mob of cows will behave if they are properly groupedand thus would like to arrange the cows into one or more contiguousgroups so that every cow is in exactly one group and that every group has a nonnegative sum.
Help him count the number of ways he can do this, modulo 1,000,000,009.
By way of example, if N = 4 and the cows' signs are 2, 3, -3, and1, then the following are the only four valid ways of arranging the cows:
(2 3 -3 1)
(2 3 -3) (1)
(2) (3 -3 1)
(2) (3 -3) (1)
Note that this example demonstrates the rule for counting different orders of the arrangements.
给出n个数,问有几种划分方案(不能改变数的位置),使得每组中数的和大于等于0。输出方案数除以 1000000009的余数。
输入
* Line 1: A single integer: N
* Lines 2..N + 1: Line i + 1 contains a single integer: A_i
输出
* Line 1: A single integer, the number of arrangements modulo 1,000,000,009.
样例输入
4
2
3
-3
1
样例输出
4
题解
dp+树状数组
设dp[i]为前i个数的划分方案数。
则易推出dp[i]=∑dp[j](sum[j]≤sum[i],j<i)。
那么可以用树状数组维护sum[j]在区间内的dp[j]的和。
由于sum过大且可能出现非正数,所以要先将sum离散化。
#include <cstdio>
#include <algorithm>
#define MOD 1000000009
using namespace std;
struct data
{
int sum , p;
}a[100010];
int f[100010] , dp[100010] , v[100010] , top;
bool cmp1(data a , data b)
{
return a.sum < b.sum;
}
bool cmp2(data a , data b)
{
return a.p < b.p;
}
void add(int p , int x)
{
int i;
for(i = p ; i <= top ; i += i & (-i))
f[i] = (f[i] + x) % MOD;
}
int query(int p)
{
int i , ans = 0;
for(i = p ; i ; i -= i & (-i))
ans = (ans + f[i]) % MOD;
return ans;
}
int main()
{
int n , i , t;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &t) , a[i].sum = a[i - 1].sum + t , a[i].p = i;
sort(a , a + n + 1 , cmp1);
v[0] = 0x80000000;
for(i = 0 ; i <= n ; i ++ )
{
if(a[i].sum != v[top]) v[++top] = a[i].sum;
a[i].sum = top;
}
sort(a , a + n + 1 , cmp2);
dp[0] = 1;
add(a[0].sum , 1);
for(i = 1 ; i <= n ; i ++ )
dp[i] = query(a[i].sum) , add(a[i].sum , dp[i]);
printf("%d\n" , dp[n]);
return 0;
}
【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组的更多相关文章
- BZOJ2274: [Usaco2011 Feb]Generic Cow Protests
2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solve ...
- [Usaco2011 Feb]Generic Cow Protests
Description Farmer John's N (1 <= N <= 100,000) cows are lined up in a row and numbered 1..N. ...
- BZOJ 2274 [Usaco2011 Feb]Generic Cow Protests
[题解] 很容易可以写出朴素DP方程f[i]=sigma f[j] (sum[i]>=sum[j],1<=j<=i). 于是我们用权值树状数组优化即可. #include<c ...
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
- 奶牛抗议 DP 树状数组
奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...
- codeforces 597C C. Subsequences(dp+树状数组)
题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...
- HDU 2227 Find the nondecreasing subsequences (DP+树状数组+离散化)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2227 Find the nondecreasing subsequences ...
- ccpc_南阳 C The Battle of chibi dp + 树状数组
题意:给你一个n个数的序列,要求从中找出含m个数的严格递增子序列,求能找出多少种不同的方案 dp[i][j]表示以第i个数结尾,形成的严格递增子序列长度为j的方案数 那么最终的答案应该就是sigma( ...
随机推荐
- MapWinGIS使用
.net语言中使用MapWinGIS.ocx http://www.cnblogs.com/kekec/archive/2011/03/30/1999709.html 基于MapWinGis的开发探索 ...
- CLR via c#读书笔记八:泛型
1.定义泛型类型或方法时,为类型指定的任何变量(比如T)都称为类型参数.使用泛型类型或方法时指定的具体数据类型称为类型实参. 2.System.Collections.Concurrent命名空间提供 ...
- logback.xml日志文件配置
放在resources目录下面就可以自动读取<?xml version="1.0" encoding="UTF-8"?> <configura ...
- windown reids
记录Windown安装Redis和php_redis扩展 和Linux系统不同windown中不需要编译安装:只需要下对版本拖拽过去即可: 首先安装redis服务: 可以百度下一个,只要注意系统版本即 ...
- mysql中的直方图采样逻辑
int handler::sample_next(uchar *buf) { // Temporary set inited to RND, since we are calling rnd_next ...
- PHP调用wsdl接口实例化SoapClient抛出异常
异常:Message:SOAP-ERROR: Parsing WSDL: Couldn't load from 'http://*****?wsdl' : failed to load externa ...
- Qt-Qml-隐藏标题栏-程序依附任务栏
最近换工作,直接欢动qml这边来了,以后可能会有更多关于qml的文章 今天第一个,qml下面怎么隐藏标题栏 第一种方法是在使用QQuickView加载qml文件的话,这里就可以使用QQuickView ...
- MySQL☞upper函数
upper(列名/字符串):把小写字母改为大写字母 格式: select upper(列名/字符串) from 表名 如下图:
- JVM常见配置
堆设置 -Xms:初始堆大小 -Xmx:最大堆大小 -XX:NewSize=n:设置年轻代大小 -XX:NewRatio=n:设置年轻代和年老代的比值.如:为3,表示年轻代与年老代比值为1:3,年轻代 ...
- lintcode112 删除排序链表中的重复元素
删除排序链表中的重复元素 给定一个排序链表,删除所有重复的元素每个元素只留下一个. 您在真实的面试中是否遇到过这个题? Yes 样例 给出 1->1->2->null,返回 1- ...