好像是很normal的01分数规划题。最小比率生成环。

u(c)=sigma(E)/k。转化一下就是k*u(c)=sigma(E). sigma(E-u(c))=0.

所以答案对于这个式子是有单调性的,二分答案,判断sigma(E-ans)是否小于0,实际上就是寻找图是否有负环。

但是此题用标准的spfa找负环会超时。

需要用到dfs优化的spfa。

既然我们只需要判断负环,那么就相当于我们需要找到一条权值和为负的回路。 
既然我们只需要找到权值和为负的回路,那不妨使距离数组d初始化为0。 
这样处理后,第一次拓展只会拓展到与起点相连边权为负的边。 
那么我们就分别枚举所有的点作为起点,如果已经找到一个负环就不再继续枚举。 
根据SPFA,我们找到的负环一定包含当前枚举的这个点。(因为这个点出现了两次啊) 
正确性相当的显然。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next; double cost, w;}edge[];
int head[N], cnt=, n, m;
double dis[N];
bool vis[N], flag; void add_edge(int u, int v, int w){
edge[cnt].p=v; edge[cnt].next=head[u]; edge[cnt].w=w; head[u]=cnt++;
}
void DFS_SPFA(int u){
if(flag) return ;
vis[u]=true;
for(int i=head[u]; i; i=edge[i].next) {
if(flag) return ;
int v=edge[i].p;
if(dis[u]+edge[i].cost<dis[v]) {
dis[v]=dis[u]+edge[i].cost;
if(vis[v]){flag=true; return ;}
else DFS_SPFA(v);
}
}
vis[u]=false;
}
bool check(double x){
FOR(i,,m) edge[i].cost=edge[i].w-x;
FOR(i,,n) dis[i]=, vis[i]=;
flag=false;
FOR(i,,n) {
DFS_SPFA(i);
if (flag) return true;
}
return false;
}
int main ()
{
int u, v;
double w;
scanf("%d%d",&n,&m);
FOR(i,,m) scanf("%d%d%lf",&u,&v,&w), add_edge(u,v,w);
double l=-, r=, mid;
FOR(i,,) {
mid=(l+r)/;
if (check(mid)) r=mid;
else l=mid;
}
printf("%.8lf\n",l);
return ;
}

BZOJ 1486 最小圈(01分数规划)的更多相关文章

  1. 洛谷P3199 [HNOI2009]最小圈(01分数规划)

    题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...

  2. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  3. BZOJ 1486: [HNOI2009]最小圈 [01分数规划]

    裸题...平均权值最小的环.... 注意$dfs-spfa$时$dfs(cl)$...不要写成$dfs(u)$ #include <iostream> #include <cstdi ...

  4. P3199 [HNOI2009]最小圈 01分数规划

    裸题,第二个权值是自己点的个数.二分之后用spfa判负环就行了. 题目描述 考虑带权的有向图G=(V,E)G=(V,E)G=(V,E)以及w:E→Rw:E\rightarrow Rw:E→R,每条边e ...

  5. 【BZOJ1486】最小圈(分数规划)

    [BZOJ1486]最小圈(分数规划) 题面 BZOJ 洛谷 求图中边权和除以点数最小的环 题解 分数规划 二分答案之后将边权修改为边权减去二分值 检查有无负环即可 #include<iostr ...

  6. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  7. BZOJ 1486 最小圈

    二分答案是显然的,我们需要dfs版spfa判一下负环. 看起来是n^2其实很快. #include<iostream> #include<cstdio> #include< ...

  8. [HNOI2009]最小圈(分数规划+SPFA判负环)

    题解:求环长比环边个数的最小值,即求min{Σw[i]/|S|},其中i∈S.这题一眼二分,然后可以把边的个数进行转化,假设存在Σw[i]/|S|<=k,则Σw[i]-k|S|<=0,即Σ ...

  9. 【洛谷 P3199】 [HNOI2009]最小圈(分数规划,Spfa)

    题目链接 一开始不理解为什么不能直接用\(Tarjan\)跑出换直接求出最小值,然后想到了"简单环",恍然大悟. 二分答案,把所有边都减去\(mid\),判是否存在负环,存在就\( ...

随机推荐

  1. 【转】Odoo装饰器: one装饰

    one装饰器的作用是对每一条记录都执行对应的方法,相当于traditional-style中的function,无返回值! 应用举例: 定义的columns now = fields.Datetime ...

  2. Hihocoder #1515 : 分数调查

    #1515 : 分数调查 http://hihocoder.com/problemset/problem/1515 分析 带权并查集. 如果把每个人抽象成一个点,之间的关系抽象成边.那么如果询问的两个 ...

  3. 相机-imu外参校准总结

    1. 研究背景及相关工作 1)研究背景 单目视觉惯性slam是一种旨在跟踪移动平台的增量运动并使用来自单个车载摄像头和imu传感器的测量结果同时构建周围环境地图的技术.视觉相机和惯性测量单元(imu) ...

  4. DBoW2 词袋模型笔记

    DBoW算法用于解决Place Recognition问题,ORB-SLAM,VINS-Mono等SLAM系统中的闭环检测模块均采用了该算法.来源于西班牙的Juan D. Tardos课题组. 主要是 ...

  5. VMWare虚拟机下 centos network is unreachable 问题的解决

    vi /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 BOOTPROTO=static BROADCAST=192.168.1.255 HW ...

  6. PS 证件照换颜色

    1.打开要修改的图片,然后先Ctrl+J备份一份 2.点击魔法棒,点击要换颜色的地方,如衣服,之后会出现虚线,如果自动选择的不全,可以按住Shift键自行选择区域 3.然后Shift+Fn+F5(由于 ...

  7. Python-S9——Day82-CRM项目实战

    1.权限的概念: 2.RBAC的设计: 3.注册登录用户所有权限到session中: 4.权限的校验: 5.基于中间件的权限校验: 1.权限的概念: 1.1 项目与应用: Project App 1. ...

  8. 第五模块:WEB开发基础 第1章·HTML&CSS基础

    01-前端介绍 02-HTML介绍 03-HTML文档结构 04-head标签相关内容 05-常用标签一之h1~h6,p,a 06-常用标签一之ul.ol.div.img.span 07-常用标签二- ...

  9. 第5章 Linux网络编程基础

    第5章 Linux网络编程基础 5.1 socket地址与API 一.理解字节序 主机字节序一般为小端字节序.网络字节序一般为大端字节序.当格式化的数据在两台使用了不同字节序的主机之间直接传递时,接收 ...

  10. 【转】: 《江湖X》开发笔谈 - 热更新框架

    前言 大家好,我们这期继续借着我们工作室正在运营的在线游戏<江湖X>来谈一下热更新机制以及我们的理解和解决方案.这里先简单的介绍一下热更新的概念,熟悉这部分的朋友可以跳过,直接看我们的方案 ...