https://www.lydsy.com/JudgeOnline/problem.php?id=2844

已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合。
定义映射 f : 2^S -> Z
f(空集) = 0
f(T) = XOR A[t] (对于一切t属于T)
现在albus把2^S中每个集合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始)。
给定一个数, 那么这个数在序列B中第1次出现时的下标是多少呢?

这话真的不是人说出来的。

简单翻译一下题就是序列所有的子集(可为空)的异或和经过排序,给一个q,求q在排序后序列中的位置下标。

参考:https://blog.sengxian.com/algorithms/linear-basis

如果是无重的,我们按照类似HDU3949:XOR的做法二进制分解q即可做(看代码应该更好理解吧)。

但是有重集合就很尴尬。

不过我们有对于一个数x,它出现次数一定是2^(n-size)(size为线性基大小)。

详细证明可以看参考,这里给出我的想法。

显然对于原线性基有且仅有一种方法构造出来x,且有且仅有一种方法构造出来非线性基内但却在a序列中的数。

那么对于非线性基内但却在a序列中的数有(n-size)个,它们和线性基内的数异或为0的方法有(n-size),排列组合就有2^(n-size)个,再与仅有一种方法构造出来x,就有2^(n-size)个了。

于是我知道了它去重前的排名,它排名前面的数都乘上2^(n-size)后+1即为答案。

PS:自己曾经也纠结过第一次算ans是否需要减一,但后来发现集合可为空……emmm这不值就有0了吗,对于0也满足这个性质啊,但是ans算排名的时候忽略了0啊。所以相当于ans-1+1=ans了啊。

#include<cstdio>
#include<iostream>
#include<vector>
#include<cstring>
#include<cmath>
#include<cctype>
#include<algorithm>
using namespace std;
const int N=;
const int p=;
const int BASE=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int qpow(int k,int n){
int res=;
while(n){
if(n&)res=res*k%p;
k=k*k%p;
n>>=;
}
return res;
}
int a[N],b[BASE+],cnt;
vector<int>mp;
int main(){
int n=read();
for(int i=;i<=n;i++){
a[i]=read();
for(int j=BASE;j>=;j--){
if(a[i]>>j&){
if(b[j])a[i]^=b[j];
else{
b[j]=a[i];cnt++;
break;
}
}
}
}
int q=read(),ans=;
for(int i=;i<=BASE;i++)
if(b[i])mp.push_back(i);
for(int i=;i<mp.size();i++){
if(q>>mp[i]&)ans+=<<i;
ans%=p;
}
ans=ans*qpow(,n-cnt)%p+;
printf("%d\n",ans%p);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ2844:albus就是要第一个出场——题解的更多相关文章

  1. BZOJ2844: albus就是要第一个出场

    Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子集构成的集合. 定义映射 f ...

  2. BZOJ2844: albus就是要第一个出场(线性基)

    Time Limit: 6 Sec  Memory Limit: 128 MBSubmit: 2054  Solved: 850[Submit][Status][Discuss] Descriptio ...

  3. 【贪心】【线性基】bzoj2844 albus就是要第一个出场

    引用题解:http://blog.csdn.net/PoPoQQQ/article/details/39829237 注意评论区. #include<cstdio> using names ...

  4. bzoj千题计划195:bzoj2844: albus就是要第一个出场

    http://www.lydsy.com/JudgeOnline/problem.php?id=2844 题意:给定 n个数,把它的所有子集(可以为空)的异或值从小到大排序得到序列 B,请问 Q 在  ...

  5. 【线性基】bzoj2844: albus就是要第一个出场

    线性基求可重rank 题目描述 给定 n 个数 $\{ a_i \}$ ,以及数 $x$. 将 $\{ a_i \}$​ 的所有子集(包括空集)的异或值从小到大排序,得到 $\{ b_i \} $. ...

  6. 【BZOJ2844】albus就是要第一个出场 高斯消元求线性基

    [BZOJ2844]albus就是要第一个出场 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2 ...

  7. CF895C: Square Subsets && 【BZOJ2844】albus就是要第一个出场

    CF895C: Square Subsets && [BZOJ2844]albus就是要第一个出场 这两道题很类似,都是线性基的计数问题,解题的核心思想也一样. CF895C Squa ...

  8. BZOJ 2844: albus就是要第一个出场 [高斯消元XOR 线性基]

    2844: albus就是要第一个出场 题意:给定一个n个数的集合S和一个数x,求x在S的$2^n$个子集从小到大的异或和序列中最早出现的位置 一开始看错题了...人家要求的是x第一次出现位置不是第x ...

  9. BZOJ 2844: albus就是要第一个出场

    2844: albus就是要第一个出场 Time Limit: 6 Sec  Memory Limit: 128 MBSubmit: 1134  Solved: 481[Submit][Status] ...

随机推荐

  1. ping telnet 指令

    Ping 一 作用 ping能够辨别网络功能的某些状态,这些状态是日常网络故障诊断的基础.Ping能够识别连接的二进制状态(看是否连通).Ping命令通过过向计算机发送ICMP回应报文并监听回应报文的 ...

  2. Python 列表下标操作

    Python  列表下标操作 引用网址: https://www.jianshu.com/p/a98e935e4d46

  3. 第三篇 JavaScript基础

    知识预览 BOM对象 DOM对象(DHTML) 实例练习 转:https://www.cnblogs.com/yuanchenqi/articles/5980312.html#_label2 一.Ja ...

  4. Linux命令应用大词典-第12章 程序编译

    12.1 gcc:GNU项目的C和C++编译器 12.2 gdberver:为GNU调试的远程服务器 12.3 cmake:跨平台的Makefile生成工具 12.4 indent:更改通过插入或删除 ...

  5. 基于freeRTOS定时器实现闹钟(定时)任务

    基于freeRTOS定时器实现闹钟(定时)任务 在智能硬件产品中硬件中,闹钟定时任务是基本的需求.一般通过APP设置定时任务,从云端或者是APP直连硬件将闹钟任务保存在硬件flash中,硬件运行时会去 ...

  6. SpringCloud IDEA 教学 (三) Eureka Client

    写在前头 本篇继续介绍基于Eureka的SpringCloud微服务搭建,回顾一下搭建过程, 第一步:建立一个服务注册中心: 第二步:建立微服务并注入到注册中心: 第三步:建立client端来访问微服 ...

  7. Hadoop源码解析 1 --- Hadoop工程包架构解析

    1 Hadoop中各工程包依赖简述     Google的核心竞争技术是它的计算平台.Google的大牛们用了下面5篇文章,介绍了它们的计算设施.     GoogleCluster: http:// ...

  8. HDU 1569 方格取数(2)(最大流最小割の最大权独立集)

    Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大.   ...

  9. 【转】cpu的核心数与线程数的关系

    原文地址:http://www.dn580.com/dnzs/dncs/2013/10/08/172948914.html 我们在选购电脑的时候,CPU是一个需要考虑到核心因素,因为它决定了电脑的性能 ...

  10. Python的string模块化方法

    Python 2.X中曾经存在过一个string模块,这个模块里面有很多操作字符串的方法,但是在Python 3.X中,这些模块化方法已经被移除了(但是string模块本身没有被移除,因为它还有其他可 ...