BZOJ4850/BZOJ2216 JSOI2016灯塔/Poi2011Lightning Conductor(决策单调性)
即对每个i最大化hj-hi+sqrt(|i-j|)。先把绝对值去掉,正反各做一次即可。注意到当x>y时,sqrt(x+1)-sqrt(x)<sqrt(y+1)-sqrt(y),所以若对于i选择j比选择k更优(j>k),对于i+1~n也会是这样,即满足决策单调性(虽然并不能算作dp)。
可以这样使用决策单调性优化:维护一个栈,存储当前考虑的这些位置中每个位置向哪个区间转移最优。转移时在栈中二分,然后考虑更新栈,如果新加入的位置向栈顶的整个区间转移都是最优的,直接将栈顶位置弹出,否则二分找一个区间的分割点,最后把这个新位置加入栈中即可。
寻找决策区间时小心不要把已更新过的位置算进去。注意维护决策时不能对答案取整,否则会影响决策区间。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],q[N],l[N],r[N],id[N],top;
double ans[N];
double calc(int i,int j){return a[j]-a[i]+sqrt(i-j);}
void work()
{
l[]=,r[]=n,id[]=,top=;
for (int i=;i<=n;i++)
{
int left=,right=top,x;
while (left<=right)
{
int mid=left+right>>;
if (l[mid]<=i&&r[mid]>=i) {x=mid;break;}
else if (r[mid]<i) left=mid+;
else right=mid-;
}
ans[i]=max(ans[i],calc(i,id[x]));
while (top&&l[top]>=i&&calc(l[top],id[top])<calc(l[top],i)) top--;
left=max(l[top],i),right=r[top],x=r[top]+;
while (left<=right)
{
int mid=left+right>>;
if (calc(mid,id[top])<calc(mid,i)) x=mid,right=mid-;
else left=mid+;
}
r[top]=x-;
if (x<=n) top++,l[top]=x,r[top]=n,id[top]=i;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4850.in","r",stdin);
freopen("bzoj4850.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
work();reverse(a+,a+n+),reverse(ans+,ans+n+);
work();for (int i=n;i;i--) printf("%.0f\n",ceil(ans[i]));
return ;
}
BZOJ4850/BZOJ2216 JSOI2016灯塔/Poi2011Lightning Conductor(决策单调性)的更多相关文章
- 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性
[BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...
- LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...
- P3515 [POI2011]Lightning Conductor[决策单调性优化]
给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- [BZOJ4850][JSOI2016]灯塔(分块/决策单调性优化DP)
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由 ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)
每个pi要求 这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化 #include<iostream> #include<cstring> #incl ...
- BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)
题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...
随机推荐
- 优步UBER司机全国各地奖励政策汇总 (4月4日-4月10日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 怎么判断ThreadPool线程池里的任务都执行完毕
在下面 链接中做方便的应该是第三种方法(他也推荐了),但是第三种方法有个小问题,就是 : WaitHandle.WaitAll(_ManualEvents); 中的_ManualEvents最大为64 ...
- WeTest功能优化第3期:业内首创,有声音的云真机
第3期功能优化目录 [云真机远程调试]音频同步传输实现测试有声 [兼容性测试报告]新增视频助力动态定位问题 [云真机远程调试]菜单栏优化助力机型选择 本期介绍的新功能,秉承创造用户需求的理念,在云真机 ...
- 华硕N43sl VNP 连接问题 800 807 621
使用VPN 创建连接,在我自己的电脑上死活连接不上,换到别人的电脑就是可以妥妥的连接. 换了几多个IP都是800错误,经过测试都不能连接.于是开始排查,把防火墙关闭,把杀毒软件关闭, 在开始命令 输入 ...
- spring boot 报错 Error creating bean with name
Application 启动类 要和父目录平级
- Android开发-API指南-<path-permission>
<path-permission> 英文原文:http://developer.android.com/guide/topics/manifest/path-permission-elem ...
- 棋盘问题:dfs
Description 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子 ...
- File Searching
Description Have you ever used file searching tools provided by an operating system? For example, in ...
- java—连连看-实现封装
1.封装 Chess.java package Linkup; /** * 棋子封装类 * * @author laixl * */ public class Chess { // 图片的 状态 // ...
- LintCode-372.在O(1)时间复杂度删除链表节点
在O(1)时间复杂度删除链表节点 给定一个单链表中的一个等待被删除的节点(非表头或表尾).请在在O(1)时间复杂度删除该链表节点. 样例 给定 1->2->3->4,和节点 3,删除 ...