tensorflow 中 name_scope 及 variable_scope 的异同
Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows for sharing variables accessed in different parts of the code without passing references to the variable around. The method tf.get_variable can be used with the name of the variable as argument to either create a new variable with such name or retrieve the one that was created before. This is different from using the tf.Variable constructor which will create a new variable every time it is called (and potentially add a suffix to the variable name if a variable with such name already exists). It is for the purpose of the variable sharing mechanism that a separate type of scope (variable scope) was introduced.
As a result, we end up having two different types of scopes:
- name scope, created using
tf.name_scopeortf.op_scope - variable scope, created using
tf.variable_scopeortf.variable_op_scope
Both scopes have the same effect on all operations as well as variables created using tf.Variable, i.e. the scope will be added as a prefix to the operation or variable name.
However, name scope is ignored by tf.get_variable. We can see that in the following example:
with tf.name_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2)
print(v1.name) # var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
The only way to place a variable accessed using tf.get_variable in a scope is to use variable scope, as in the following example:
with tf.variable_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2)
print(v1.name) # my_scope/var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
Finally, let's look at the difference between the different methods for creating scopes. We can group them in two categories:
tf.name_scope(name)(for name scope) andtf.variable_scope(name_or_scope, ...)(for variable scope) create a scope with the name specified as argumenttf.op_scope(values, name, default_name=None)(for name scope) andtf.variable_op_scope(values, name_or_scope, default_name=None, ...)(for variable scope) create a scope, just like the functions above, but besides the scopename, they accept an argumentdefault_namewhich is used instead ofnamewhen it is set toNone. Moreover, they accept a list of tensors (values) in order to check if all the tensors are from the same, default graph. This is useful when creating new operations, for example, see the implementation oftf.histogram_summary.
大意是说 name_scope及variable_scope的作用都是为了不传引用而访问跨代码区域变量的一种方式,其内部功能是在其代码块内显式创建的变量都会带上scope前缀(如上面例子中的a),这一点它们几乎一样。而它们的差别是,在其作用域中获取变量,它们对 tf.get_variable() 函数的作用是一个会自动添加前缀,一个不会添加前缀。
tensorflow 中 name_scope 及 variable_scope 的异同的更多相关文章
- tensorflow 中 name_scope和variable_scope
import tensorflow as tf with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable( ...
- tensorflow中使用tf.variable_scope和tf.get_variable的ValueError
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...
- tensorflow中命名空间、变量命名的问题
1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:t ...
- Tensorflow中的name_scope和variable_scope
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行 ...
- TensorFlow学习笔记(1):variable与get_variable, name_scope()和variable_scope()
Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命 ...
- TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...
- [翻译] Tensorflow中name scope和variable scope的区别是什么
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...
- TensorFlow中的变量命名以及命名空间.
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, t ...
- tensorflow中slim模块api介绍
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35 http://blog.csdn.net/guvcolie/article/details/77686 ...
随机推荐
- Java动态代理机制小结
因为最近学习hadoop中用到了动态代理的相关知识,之前AOP编程也碰到过,所以在这里特地总结一下. 在java的动态代理机制中,有两个重要的类或接口,一个是 InvocationHandler(In ...
- oracle 存储过程中使用date 时、分、秒丢失
今天有一开发兄弟找我.说出现一奇怪现象,在存储过程中赋date类型的值,时.分.秒都丢失了,以下来做个试验: SQL> drop table test purge; SQL> create ...
- 解决 Visual Studio For Mac 还原包失败问题
体验了一把改名部最新的杰作,总体感觉挺好,也能看出微软在跨平台这方面所做出的努力. 可能是预览版的缘故,还是遇到一个比较大的问题,创建netcore项目后,依赖包还原失败,错误信息如下: 可以先试着手 ...
- PAT006 Tree Traversals Again
题目: An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For exa ...
- ubuntu 终端$换行
编辑~/.bashrc文件 sudo gedit ~/.bashrc 红色部分为添加的 \n if [ "$color_prompt" = yes ]; then PS1= ...
- java强软弱虚引用详解(转载)
转载自:http://zhangjunhd.blog.51cto.com/113473/53092/ ava:对象的强.软.弱和虚引用 2007-12-01 17:20:20 标签:Java 软引用 ...
- HTML DOM和BOM常用操作总结
JavaScript Code 1234567891011121314151617181920212223242526272829303132333435363738394041424344454 ...
- [Linux 学习] Centos 使用yum出现Loaded plugins: refresh-packagekit, security
sudo vim /etc/yum/pluginconf.d/fastestmirror.conf enabled=0 //把1改为0 verbose=0 socket_timeout=3 hos ...
- hashMap与hashTable区别
1.继承不同. public class Hashtable extends Dictionary implements Map public class HashMap extends Abstra ...
- NHibernate VS IbatisNet
NHibernate 是当前最流行的 Java O/R mapping 框架Hibernate 的移植版本,当前版本是 1.0 .2 .它出身于sf.net..IbatisNet 是另外一种优秀的 ...