tensorflow 中 name_scope 及 variable_scope 的异同
Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows for sharing variables accessed in different parts of the code without passing references to the variable around. The method tf.get_variable
can be used with the name of the variable as argument to either create a new variable with such name or retrieve the one that was created before. This is different from using the tf.Variable
constructor which will create a new variable every time it is called (and potentially add a suffix to the variable name if a variable with such name already exists). It is for the purpose of the variable sharing mechanism that a separate type of scope (variable scope) was introduced.
As a result, we end up having two different types of scopes:
- name scope, created using
tf.name_scope
ortf.op_scope
- variable scope, created using
tf.variable_scope
ortf.variable_op_scope
Both scopes have the same effect on all operations as well as variables created using tf.Variable
, i.e. the scope will be added as a prefix to the operation or variable name.
However, name scope is ignored by tf.get_variable
. We can see that in the following example:
with tf.name_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
The only way to place a variable accessed using tf.get_variable
in a scope is to use variable scope, as in the following example:
with tf.variable_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # my_scope/var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
Finally, let's look at the difference between the different methods for creating scopes. We can group them in two categories:
tf.name_scope(name)
(for name scope) andtf.variable_scope(name_or_scope, ...)
(for variable scope) create a scope with the name specified as argumenttf.op_scope(values, name, default_name=None)
(for name scope) andtf.variable_op_scope(values, name_or_scope, default_name=None, ...)
(for variable scope) create a scope, just like the functions above, but besides the scopename
, they accept an argumentdefault_name
which is used instead ofname
when it is set toNone
. Moreover, they accept a list of tensors (values
) in order to check if all the tensors are from the same, default graph. This is useful when creating new operations, for example, see the implementation oftf.histogram_summary
.
大意是说 name_scope及variable_scope的作用都是为了不传引用而访问跨代码区域变量的一种方式,其内部功能是在其代码块内显式创建的变量都会带上scope前缀(如上面例子中的a),这一点它们几乎一样。而它们的差别是,在其作用域中获取变量,它们对 tf.get_variable() 函数的作用是一个会自动添加前缀,一个不会添加前缀。
tensorflow 中 name_scope 及 variable_scope 的异同的更多相关文章
- tensorflow 中 name_scope和variable_scope
import tensorflow as tf with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable( ...
- tensorflow中使用tf.variable_scope和tf.get_variable的ValueError
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...
- tensorflow中命名空间、变量命名的问题
1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:t ...
- Tensorflow中的name_scope和variable_scope
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行 ...
- TensorFlow学习笔记(1):variable与get_variable, name_scope()和variable_scope()
Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命 ...
- TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...
- [翻译] Tensorflow中name scope和variable scope的区别是什么
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...
- TensorFlow中的变量命名以及命名空间.
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, t ...
- tensorflow中slim模块api介绍
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35 http://blog.csdn.net/guvcolie/article/details/77686 ...
随机推荐
- vim添加一键编译
引用来自: http://blog.chinaunix.net/uid-21202106-id-2406761.html; 事先声明,我使用的VIM完全是基于终端的,而不是gvim或vim-x11.因 ...
- c# 字符串排序 (面试题)
将一些字符串,如: "bc", "ad", "ac", "hello", "xman", " ...
- Python Excel 导入导出【转】
一.安装xlrd模块 到python官网下载http://pypi.python.org/pypi/xlrd模块安装,前提是已经安装了python 环境. 二.使用介绍 1.导入模块 import x ...
- git设置忽略文件和目录
1.登录gitbash命令端进入本地git库目录 Administrator@PC201601200946 MINGW32 /d/gitrespository/crmweb (master) 2.创建 ...
- swt生成、jar可执行包生成.exe可执行文件(giter)
http://tomfish88.iteye.com/blog/1074786 —————————————————————————————————————————————————————————— 最 ...
- spring mvc 3.0 实现文件上传功能
http://club.jledu.gov.cn/?uid-5282-action-viewspace-itemid-188672 —————————————————————————————————— ...
- easyUI的column的field的颜色属性
{field:'hasPrintStr',title:'状态',width:10,halign:'center',align:'right',styler: function(value,row,i ...
- 第一百六十三节,jQuery,基础核心
jQuery,基础核心 一.代码风格 在jQuery程序中,不管是页面元素的选择.内置的功能函数,都是美元符号“$”来起 始的.而这个“$”就是jQuery当中最重要且独有的对象:jQuery对象,所 ...
- J2EE是什么?
解答:从整体上讲,J2EE是使用Java技术开发企业级应用的工业标准,它是Java技术不断适应和促进企业级应用过程中的产物.适用于企业级应用的J2EE,提供一个平台独立的.可移植的.多用户的.安全的和 ...
- weblogic配置oracle数据源
在weblogic配置oracle数据源还是挺简单的,网上也有很多关于这方面的文章,写给自己也写给能够得到帮助的人吧.weblogic新建域那些的就不说了哈.点击startWebLogic文件,会弹出 ...