【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP
第一次斜率优化。
大致有两种思路:
1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了。
2.f[i]表示第i个选,第j+1不选的最优情况(最大效率和)f[i]=f[j]+sum[i]-sum[j+1] (i-k-1<=j<=i-1),同样也能单调队列优化成O(n)。
PS:第一种做法的需要枚举不选最后k个数的情况,但是Min的初值0x7fffffff(max_longint)是会WA一个点的。。。。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cmath>
#define inf 999999999999999999LL
#define N 100000+1000
#define ll long long
using namespace std;
struct data
{
int p;
ll v;
}q[N];
int a[N];
int n,k,l,r;
ll minn,ans,f[N];
inline int read()
{
int f=,ans=;
char c;
while (!isdigit(c=getchar())) if (c=='-') f=-;
ans=c-'';
while (isdigit(c=getchar())) ans=ans*+c-'';
return ans*f;
}
int main()
{
n=read(); k=read();
for (int i=;i<=n;i++)
{
a[i]=read();
ans+=a[i];
}
//l=; r=0;
for (int i=;i<=n;i++)
{
f[i]=q[l].v+a[i];
while (l<=r && q[r].v>f[i]) r--;
q[++r].v=f[i];
q[r].p=i;
while (q[l].p<i-k) l++;
}
minn=inf;
for (int i=n-k;i<=n;i++) minn=min(minn,f[i]);
printf("%lld\n",ans-minn);
return ;
}
第一种做法
Description
在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。
然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。
靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。
Input
* 第一行:空格隔开的两个整数N和K
* 第二到N+1行:第i+1行有一个整数E_i
Output
* 第一行:一个值,表示FJ可以得到的最大的效率值。
Sample Input
1
2
3
4
5
输入解释:
FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛
Sample Output
FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。
HINT
Source
【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP的更多相关文章
- bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp
2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1159 Solved: 593[Submit] ...
- [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化
2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1118 Solved: 569[Submit] ...
- BZOJ2442: [Usaco2011 Open]修剪草坪
2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 500 Solved: 244[Submit][ ...
- bzoj2442[Usaco2011 Open]修剪草坪——单调队列优化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 考虑记录前 i 个.末尾 j 个连续选上的最大值.发现时空会爆. 又发现大量的转移形如 ...
- BZOJ2442 Usaco2011 Open修剪草坪(动态规划+单调队列)
显然可以dp.显然可以单调队列优化一下. #include<iostream> #include<cstdio> #include<cmath> #include& ...
- BZOJ 2442: [Usaco2011 Open]修剪草坪( dp )
dp dp[ i ] 表示第 i 个不选 , 前 i 个的选择合法的最小损失 , dp[ i ] = min( dp[ j ] ) ( max( 0 , i - 1 - k ) <= j < ...
- BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP
BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
随机推荐
- C#中的LINQ
从自己的印象笔记里面整理出来,排版欠佳.见谅! 1.LINQ: 语言集成查询(Language Integrated Query) 实例: var q= from c in catego ...
- 报错注入分析之updatexml注入
PS:今天元旦,家里打来电话说,今年春节要回老家.心里倍感恐惧.可以清楚的感觉得到父母说话的气息没有底气.大概如同我一样是恐惧吧.加油吧!努力赚钱! 先丢一篇很不错的文章:http://www.moo ...
- (转)android 蓝牙通信编程
转自:http://blog.csdn.net/pwei007/article/details/6015907 Android平台支持蓝牙网络协议栈,实现蓝牙设备之间数据的无线传输. 本文档描述了怎样 ...
- (转载)html中table的使用方法
colspan表示该一储存格向右打通的栏数. rowspan表示该一储存格向下打通的栏数. colspan是表示横向合并单元格,colspan=“3”表示水平合并三个td rowspan是表示竖直 ...
- JDBC的批处理操作三种方式 pstmt.addBatch()
package lavasoft.jdbctest; import lavasoft.common.DBToolkit; import java.sql.Connection; import java ...
- php二进制安全的含义
PHP里,有string的概念.string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择). byte里,有AS ...
- BigZhuGod的粉丝
BigZhuGod的粉丝 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- 切换debian8系统语言环境
想切换操作系统的默认语言环境,可以使用如下命令,而不用重新安装系统: 查看操作系统的语言: # env | grep LANG 使用root导入要使用的系统语言: # export LANG=en_U ...
- ubuntu下命令杂项
一. 1.用sudo apt-get install python3-numpy之后,会默认把numpy安装到 /usr/lib/python3/dist-packages目录下,而且版本比较低. ...
- display:table-cell的应用
一.display:table-cell属性简述 display:table-cell属性指让标签元素以表格单元格的形式呈现,类似于td标签.目前IE8+以及其他现代浏览器都是支持此属性的,但是IE6 ...