第一次斜率优化。  

  大致有两种思路:

  1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了。

  2.f[i]表示第i个选,第j+1不选的最优情况(最大效率和)f[i]=f[j]+sum[i]-sum[j+1] (i-k-1<=j<=i-1),同样也能单调队列优化成O(n)。

  PS:第一种做法的需要枚举不选最后k个数的情况,但是Min的初值0x7fffffff(max_longint)是会WA一个点的。。。。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cmath>
#define inf 999999999999999999LL
#define N 100000+1000
#define ll long long
using namespace std;
struct data
{
int p;
ll v;
}q[N];
int a[N];
int n,k,l,r;
ll minn,ans,f[N];
inline int read()
{
int f=,ans=;
char c;
while (!isdigit(c=getchar())) if (c=='-') f=-;
ans=c-'';
while (isdigit(c=getchar())) ans=ans*+c-'';
return ans*f;
}
int main()
{
n=read(); k=read();
for (int i=;i<=n;i++)
{
a[i]=read();
ans+=a[i];
}
//l=; r=0;
for (int i=;i<=n;i++)
{
f[i]=q[l].v+a[i];
while (l<=r && q[r].v>f[i]) r--;
q[++r].v=f[i];
q[r].p=i;
while (q[l].p<i-k) l++;
}
minn=inf;
for (int i=n-k;i<=n;i++) minn=min(minn,f[i]);
printf("%lld\n",ans-minn);
return ;
}

第一种做法


Description

在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。

然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。

靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。

Input

* 第一行:空格隔开的两个整数N和K

* 第二到N+1行:第i+1行有一个整数E_i

Output

* 第一行:一个值,表示FJ可以得到的最大的效率值。

Sample Input

5 2
1
2
3
4
5

输入解释:

FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛

Sample Output

12

FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。

HINT

 

Source

【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP的更多相关文章

  1. bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1159  Solved: 593[Submit] ...

  2. [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1118  Solved: 569[Submit] ...

  3. BZOJ2442: [Usaco2011 Open]修剪草坪

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 500  Solved: 244[Submit][ ...

  4. bzoj2442[Usaco2011 Open]修剪草坪——单调队列优化

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 考虑记录前 i 个.末尾 j 个连续选上的最大值.发现时空会爆. 又发现大量的转移形如 ...

  5. BZOJ2442 Usaco2011 Open修剪草坪(动态规划+单调队列)

    显然可以dp.显然可以单调队列优化一下. #include<iostream> #include<cstdio> #include<cmath> #include& ...

  6. BZOJ 2442: [Usaco2011 Open]修剪草坪( dp )

    dp dp[ i ] 表示第 i 个不选 , 前 i 个的选择合法的最小损失 , dp[ i ] = min( dp[ j ] ) ( max( 0 , i - 1 - k ) <= j < ...

  7. BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP

    BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...

  8. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  9. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

随机推荐

  1. ms08-067漏洞--初识渗透测试--想必很多初学者都会遇到我文中提及的各种问题

    最近读了一本书--<<渗透测试实践指南>>,测试了书中的一些例子后,开始拿ms08-067这个经典的严重漏洞练手,实践当中遇到诸多问题,好在一一解决了,获益匪浅. 在谷歌搜索的 ...

  2. jQuery cookie使用

    什么是jquery cookie? A simple, lightweight jQuery plugin for reading, writing and deleting cookies. Usa ...

  3. python address already in use

    1)找到使用端口的进程pid netstat -lp 2)kill掉pid kill -9 1234

  4. HttpUtil

    1.发送doPost请求,在web那边使用request.setCharacterEncoding("UTF-8");保证中文不乱码,不需要第三方jar包 public stati ...

  5. JSFiddle

    <script async src="//jsfiddle.net/980355088/k0u1qjm6/embed/"></script>

  6. node09-cookie

    目录:node01-创建服务器 node02-util node03-events node04-buffer node05-fs node06-path node07-http node08-exp ...

  7. sh4.case语句

    case ... esac 与其他语言中的 switch ... case 语句类似,是一种多分枝选择结构.case 语句匹配一个值或一个模式,如果匹配成功,执行相匹配的命令.case语句格式如下: ...

  8. 等差数列(bzoj 3357)

    Description     约翰发现奶牛经常排成等差数列的号码.他看到五头牛排成这样的序号:"1,4,3,5,7" 很容易看出"1,3,5,7"是等差数列. ...

  9. SQL语法和运算符(一)

    一个数据库通常包含一个或多个表.每个表由一个名字标识,表包含带有数据的记录(行). 一些最重要的SQL命令(SQL对大小写不敏感): 一.SQL语法 select:从数据库中提取数据 update:更 ...

  10. C# Cookie

    1  推荐使用 is 或 as 操作符而不是强制 2  编码风格:Tab ——改成两个 C# 文档注释的快捷键  (将配置表压缩,从压缩文件中查找xml配置表 这个是指Unity项目上面)   尽量使 ...