题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1009

  这道题一看数据范围:$ n<=10^9 $,显然不是数学题就是矩乘快速幂优化dp。

  我们设$ f[i][j] $表示前$ i $位匹配不吉利数字$ j $位时的方案数,因为每一位的转移方式都是相同的,于是用kmp预处理出转移矩阵,直接矩乘快速幂就能过了。

#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<map>
#define ll long long
#define ull unsigned long long
#define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b)
#define lowbit(x) (x& -x)
#define inf 0x3f3f3f3f
#define eps 1e-18
#define maxn 100010
inline ll read(){ll tmp=; char c=getchar(),f=; for(;c<''||''<c;c=getchar())if(c=='-')f=-; for(;''<=c&&c<='';c=getchar())tmp=(tmp<<)+(tmp<<)+c-''; return tmp*f;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void swap(int &a,int &b){int tmp=a; a=b; b=tmp;}
using namespace std;
struct matrix{
int size;
int num[][];
}ans;
int nxt[];
char s[];
int n,m,mod;
matrix mul(matrix a,matrix b)
{
matrix c; memset(&c,,sizeof(c));
c.size=a.size;
for(int i=;i<=a.size;i++)
for(int j=;j<=a.size;j++)
for(int k=;k<=a.size;k++)
c.num[i][j]=(c.num[i][j]+a.num[i][k]*b.num[k][j])%mod;
return c;
}
matrix power(matrix a,ll b)
{
matrix ans; memset(&ans,,sizeof(ans));
ans.size=a.size;
for(int i=;i<=ans.size;i++)ans.num[i][i]=;
for(;b;b>>=){
if(b&)ans=mul(ans,a);
a=mul(a,a);
}
return ans;
}
int main()
{
n=read(); m=read(); mod=read();
scanf("%s",s);
nxt[]=; int tmp=;
for(int i=;i<=m;i++){
while(tmp&&s[i]!=s[tmp])tmp=nxt[tmp];
if(s[i]==s[tmp])++tmp;
nxt[i+]=tmp;
}
for(int i=;i<m;i++)
for(int j='';j<='';j++){
int tmp=i;
while(tmp&&j!=s[tmp])tmp=nxt[tmp];
if(j==s[tmp])++tmp;
if(tmp<m)++ans.num[i+][tmp+];
}
ans.size=m;
ans=power(ans,n);
int tot=;
for(int i=;i<=m;i++)
tot+=ans.num[][i];
printf("%d\n",tot%mod);
}

bzoj1009

【bzoj1009】[HNOI2008]GT考试(矩阵快速幂优化dp+kmp)的更多相关文章

  1. BZOJ 1009 [HNOI2008]GT考试(矩阵快速幂优化DP+KMP)

    题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s ...

  2. BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)

    题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...

  3. BZOJ1009: [HNOI2008]GT考试 矩阵快速幂+kmp+dp

    这个题你发现打暴力的话可以记忆化搜素加剪枝,那么意味着可以递推,我们搜的话就是1010^9我们就往下匹配遇到匹配成功就return,那么我们可以想一下什么决定了状态,我们考虑kmp的过程,对于我们目前 ...

  4. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  5. 2018.10.22 bzoj1009: [HNOI2008]GT考试(kmp+矩阵快速幂优化dp)

    传送门 f[i][j]f[i][j]f[i][j]表示从状态"匹配了前i位"转移到"匹配了前j位"的方案数. 这个东西单次是可以通过跳kmp的fail数组得到的 ...

  6. 2018.10.16 uoj#340. 【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂优化dp)

    传送门 一道不错的矩阵快速幂优化dpdpdp. 设f[i][j][k][l]f[i][j][k][l]f[i][j][k][l]表示前iii轮第iii轮还有jjj个一滴血的,kkk个两滴血的,lll个 ...

  7. 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)

    Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...

  8. bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...

  9. 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)

    传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...

随机推荐

  1. jQuery中如何给动态添加的元素绑定事件

    jquery中绑定事件一般使用bind,或者click,但是这只能是对已经加载好的元素定义事件,那些后来添加插入的元素则需要另行绑定.在1.7版本以前使用live.但是在1.8版本以后推荐使用on.这 ...

  2. delphi中 ExecSQL 与 open

    对于不用返回结果集的要用execsql反之则用open;insert ,update,delete就要用到execsql;select就要用open 说得对,例子:with query1 do clo ...

  3. cocopods

    一.什么是CocoaPods 1.为什么需要CocoaPods 在进行iOS开发的时候,总免不了使用第三方的开源库,比如SBJson.AFNetworking.Reachability等等.使用这些库 ...

  4. Storm-源码分析-Topology Submit-Executor-mk-threads

    对于executor thread是整个storm最为核心的代码, 因为在这个thread里面真正完成了大部分工作, 而其他的如supervisor,worker都是封装调用. 对于executor的 ...

  5. Python SQLAlchemy基本操作和常用技巧包含大量实例,非常好python

    http://www.makaidong.com/%E8%84%9A%E6%9C%AC%E4%B9%8B%E5%AE%B6/28053.shtml "Python SQLAlchemy基本操 ...

  6. jq封装选项卡写法

    jq普通选项卡写法: var tabTag=$('#tabon'); var tabon=tabTag.find('li');//菜单栏 var tabCon=$(".hidden" ...

  7. gevent For the Working Python Developer

    Gevent指南   gevent程序员指南 由Gevent社区编写 gevent是一个基于libev的并发库.它为各种并发和网络相关的任务提供了整洁的API. 介绍 贡献者 核心部分 Greenle ...

  8. cmd命令行和bat批处理操作windows服务(转载)

    一.cmd命令行---进行Windows服务操作 1.安装服务 sc create 服务名 binPath= "C:\Users\Administrator\Desktop\win32srv ...

  9. 4 TensorFlow入门之dropout解决overfitting问题

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

  10. Hadoop十年解读与发展预测

    编者按:Hadoop于2006年1月28日诞生,至今已有10年,它改变了企业对数据的存储.处理和分析的过程,加速了大数据的发展,形成了自己的极其火爆的技术生态圈,并受到非常广泛的应用.在2016年Ha ...