4033: [HAOI2015]树上染色

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 2437  Solved: 1034
[Submit][Status][Discuss]

Description

有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并
将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。
问收益最大值是多少。

Input

第一行两个整数N,K。
接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to)。
输入保证所有点之间是联通的。
N<=2000,0<=K<=N

Output

输出一个正整数,表示收益的最大值。

Sample Input

5 2
1 2 3
1 5 1
2 3 1
2 4 2

Sample Output

17
【样例解释】
将点1,2染黑就能获得最大收益。

HINT

2017.9.12新加数据一组 By GXZlegend

Source

[Submit][Status][Discuss]

初看此题,树上背包!f[i][j]表示以i为根的子树选j个黑点的最大收益!

然后就发现转移爆炸。

于是令f[i][j]表示以i为根的子树选j个黑点的贡献,合并子树贡献后将自己到父亲的边的贡献加上即可,转移一句话。

然后就没了?

回头一看发现复杂度是$O(n^3)$的,于是分析一波复杂度。

$T(n)=\sum_{u=1}^{n}\sum_{v,w\ is\ a\ son\ of\ u} size[v]\times size[w]=\sum_{u=1}^{n}\sum_{u\ is\ the\ LCA\ of\ v,w} 1=O(n^2)$

于是就可做了,当然如果写丑了还是会变成$O(n^3)$的。

最后要记得边长是long long,狂WA不止。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
typedef long long ll;
using namespace std; const int N=;
int n,m,u,v,w,cnt,h[N],sz[N],to[N<<],nxt[N<<];
ll f[N][N],dep[N],val[N<<];
void add(int u,int v,int w){ to[++cnt]=v; val[cnt]=w; nxt[cnt]=h[u]; h[u]=cnt; } void dfs(int x,int fa){
f[x][]=f[x][]=; sz[x]=;
For(i,x) if ((k=to[i])!=fa){
dep[k]=val[i]; dfs(k,x);
for (int l=min(sz[x],m); l>=; l--)
for (int j=min(sz[k],m-l); j>=; j--) f[x][j+l]=max(f[x][j+l],f[x][l]+f[k][j]);
sz[x]+=sz[k];
}
rep(i,,min(sz[x],m)) f[x][i]+=dep[x]*(i*(m-i)+(sz[x]-i)*(n-sz[x]-m+i));
} int main(){
freopen("bzoj4033.in","r",stdin);
freopen("bzoj4033.out","w",stdout);
scanf("%d%d",&n,&m);
memset(f,-0x3f,sizeof(f));
rep(i,,n) scanf("%d%d%d",&u,&v,&w),add(u,v,w),add(v,u,w);
dfs(,); printf("%lld\n",f[][m]);
return ;
}

[BZOJ4033][HAOI2015]树上染色(树形DP)的更多相关文章

  1. bzoj4033 [HAOI2015]树上染色——树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...

  2. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  3. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  4. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  5. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  6. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  7. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  8. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  9. 【BZOJ4033】【HAOI2015】树上染色 树形DP

    题目描述 给你一棵\(n\)个点的树,你要把其中\(k\)个点染成黑色,剩下\(n-k\)个点染成白色.要求黑点两两之间的距离加上白点两两之间距离的和最大.问你最大的和是多少. \(n\leq 200 ...

随机推荐

  1. 【STSRM10】数学上来先打表

    [算法]DP+数学计数 [题意]给出n个点(不同点之间有区别),求出满足下列条件的连边(双向边)方案(对1004535809取模): 1.每条边连接两个不同的点,每两个点之间至多有一条边. 2.不存在 ...

  2. MySQL增删改查之查询

    (7)范围查询select * from car where price>40 and price<60   --查询价格在40-60之间的select * from car where ...

  3. 推荐15条MySQL改善经验,让系统更稳定

    1. 为查询缓存优化查询 像 NOW() 和 RAND() 或是其它的诸如此类的SQL函数都不会开启查询缓存,谨慎使用 2.EXPLAIN 我们的SELECT查询(可以查看执行的行数) 可以让我们找到 ...

  4. Brave Game HDU1846(巴什博弈)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1846 题目: Problem Description 十年前读大学的时候,中国每年都要从国外引进一些电 ...

  5. F题 hdu 1431 素数回文

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1431 素数回文 Time Limit: 2000/1000 MS (Java/Others)    M ...

  6. mybatis 显示 sql日志

    #项目日志logging.level.com.zhang.com=debug #mybatis sql相关日志显示logging.level.org.mybatis.spring=DEBUGloggi ...

  7. windows 上启动appium

    import org.apache.commons.exec.CommandLine; import org.apache.commons.exec.DefaultExecuteResultHandl ...

  8. ThinkSnS v4后台任意文件下载漏洞

    漏洞文件: /apps/admin/Lib/Action/UpgradeAction.class.php 主要问题还是出现在了180行直接将远程获取到的图片直接保存. 文中可见并没有做任何的对$dow ...

  9. Python3 shelve模块(持久化)

    shelve模块 也可以序列化Python所有数据类型,而且可以多次序列化;shelve模块通过key-value方式持久化 1.序列化 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

  10. [Leetcode Week14]Path Sum II

    Path Sum II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/path-sum-ii/description/ Description Giv ...