Poj3468 A Simple Problem with Integers (分块)
题面
题解
区间求和$+$区间修改板子,这里用分块写的
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
#define int ll
const int N = 1e5 + 10 , SN = 340;
int n, siz, q, bel[N], val[N];
int sum[SN], add[SN], L[SN], R[SN];
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
void modify (int l, int r, int c) {
int fl = bel[l], fr = bel[r];
if(fl == fr) {
for(int i = l; i <= r; ++i)
val[i] += c, sum[fl] += c;
} else {
for(int i = l; i <= R[fl]; ++i)
val[i] += c, sum[fl] += c;
for(int i = fl + 1; i < fr; ++i) add[i] += c;
for(int i = L[fr]; i <= r; ++i)
val[i] += c, sum[fr] += c;
}
}
int query(int l, int r) {
int fl = bel[l], fr = bel[r], ret = 0;
if(fl == fr) {
for(int i = l; i <= r; ++i)
ret += val[i] + add[fl];
} else {
for(int i = l; i <= R[fl]; ++i)
ret += val[i] + add[fl];
for(int i = fl + 1; i < fr; ++i) ret += sum[i] + add[i] * (R[i] - L[i] + 1);
for(int i = L[fr]; i <= r; ++i)
ret += val[i] + add[fr];
} return ret;
}
signed main () {
read(n), read(q), siz = sqrt(n);
for(int i = 1; i <= n; ++i)
read(val[i]), bel[i] = (i - 1) / siz + 1, sum[bel[i]] += val[i];
for(int i = 1; i <= bel[n]; ++i)
L[i] = R[i - 1] + 1, R[i] = i * siz;
R[bel[n]] = n; int l, r, k;
while(q--) {
char opt; scanf("\n%c", &opt);
read(l), read(r);
if(opt == 'Q') printf("%lld\n", query(l, r));
else read(k), modify(l, r, k);
}
return 0;
}
Poj3468 A Simple Problem with Integers (分块)的更多相关文章
- POJ3468 a simple problem with integers 分块
题解:分块 解题报告: 是个板子题呢qwq 没什么可说的,加深了对分块的理解趴还是 毕竟这么简单的板子题我居然死去活来WA了半天才调出来,,,哭了QAQ 还是说下我错在了哪几个地方(...是的,有好几 ...
- 线段树---poj3468 A Simple Problem with Integers:成段增减:区间求和
poj3468 A Simple Problem with Integers 题意:O(-1) 思路:O(-1) 线段树功能:update:成段增减 query:区间求和 Sample Input 1 ...
- POJ 3468 A Simple Problem with Integers(分块入门)
题目链接:http://poj.org/problem?id=3468 A Simple Problem with Integers Time Limit: 5000MS Memory Limit ...
- poj3468 A Simple Problem with Integers (线段树区间最大值)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 92127 ...
- poj------(3468)A Simple Problem with Integers(区间更新)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 60745 ...
- POJ3468 A Simple Problem with Integers 【段树】+【成段更新】
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 57666 ...
- poj3468 A Simple Problem with Integers (树状数组做法)
题目传送门 A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 1 ...
- POJ3468 A Simple Problem with Integers —— 线段树 区间修改
题目链接:https://vjudge.net/problem/POJ-3468 You have N integers, A1, A2, ... , AN. You need to deal wit ...
- poj3468 A Simple Problem with Integers(线段树区间更新)
https://vjudge.net/problem/POJ-3468 线段树区间更新(lazy数组)模板题 #include<iostream> #include<cstdio&g ...
随机推荐
- Eclipse中 将java Gradle项目转换为web项目
1.找到项目工作空间目录,打开.project文件,并修改文件, 修改如下: 找到:<natures> </natures>代码段,在代码段中加入如下内容并保存: ...
- 基本控件文档-UISwitch属性---iOS-Apple苹果官方文档翻译
本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/Ch ...
- ie6下双边距的问题
1.ie6双边距情况 <div class="red"></div> <div class="blue"></div& ...
- 网络设备之分配net_device结构
注册网络设备时,会调用pci_driver->probe函数,以e100为例,最终会调用alloc_netdev_mqs来分配内存,并且在分配内存后调用setup函数(以太网为ether_set ...
- java===java基础学习(14)---封装
package dog; public class Demo4 { public static void main(String []args) { Worker w1= new Worker(&qu ...
- 【NOIP2016】组合数问题
写着玩玩…… 反正超级sb题. #include<bits/stdc++.h> typedef long long ll; using namespace std; ll c[][],h[ ...
- HTML5API(3)
十一.ajax同源操作 URL说明是否允许通信 同一域名下允许 http://www.a.com/a.js , http://www.a.com/b.js 同一域名下不同文件夹允许 http://ww ...
- mssql批量刷新多个表的数据
DECLARE @SQL VARCHAR(MAX)SELECT @SQL=ISNULL(@SQL,'')+' UPDATE '+NAME+' SET B=3 WHERE B=2'FROM SYSOBJ ...
- Android端与Android端利用WIFI进行FTP通信
一.客户端通信工具类: import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; im ...
- 【Spring事务的事务属性】
大家都知道,Spring的声明式事务是通过事务属性来定义的,而spring的事务属性包含了5个方面:传播行为,隔离级别,是否只读,事务超时,回滚规则: 传播行为 传播行为,是属于事务边界相关的属性,定 ...