[POJ2186]Popular Cows
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 34752   Accepted: 14155

Description

Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

Input

* Line 1: Two space-separated integers, N and M

* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.

Output

* Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

Hint

Cow 3 is the only cow of high popularity. 

Source

 
题目大意:给定一个有向图,求出有多少点满足所有点可以间接或直接地到它。
试题分析:Tarjan缩点,然后求出哪个点出度为0就好了,输出其大小。(因为缩点后是DAG)
     如果有>1个出度为0那么就肯定没有了。
 
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=500001;
const int INF=999999;
int N,M;
int dfn[MAXN],low[MAXN];
int que[MAXN]; bool vis[MAXN];
vector<int> vec[MAXN];
int outdu[MAXN];
int tar[MAXN];
int tot,tmp,Col;
int size[MAXN]; void Tarjan(int x){
++tot; dfn[x]=low[x]=tot;
vis[x]=true; que[++tmp]=x;
for(int i=0;i<vec[x].size();i++){
int to=vec[x][i];
if(!dfn[to]){
Tarjan(to);
low[x]=min(low[x],low[to]);
}
else if(vis[to]) low[x]=min(dfn[to],low[x]);
}
if(dfn[x]==low[x]){
++Col; tar[x]=Col;
vis[x]=false;
while(que[tmp]!=x){
int k=que[tmp];
tar[k]=Col; vis[k]=false;
tmp--;
}
tmp--;
}
}
int ans,anst;
int main(){
N=read(),M=read();
for(int i=1;i<=M;i++){
int u=read(),v=read();
vec[u].push_back(v);
}
for(int i=1;i<=N;i++) if(!dfn[i]) Tarjan(i);
for(int i=1;i<=N;i++){
int col=tar[i];size[col]++;
for(int j=0;j<vec[i].size();j++){
if(tar[vec[i][j]]!=col)
outdu[col]++;
}
}
for(int i=1;i<=Col;i++){
if(!outdu[i])
ans+=size[i],anst++;
}
if(anst>1) printf("0\n");
else printf("%d\n",ans);
}

【图论】Popular Cows的更多相关文章

  1. POJ 2186 Popular Cows(Targin缩点)

    传送门 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31808   Accepted: 1292 ...

  2. POJ2186 Popular Cows [强连通分量|缩点]

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31241   Accepted: 12691 De ...

  3. poj 2186 Popular Cows

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29908   Accepted: 12131 De ...

  4. [强连通分量] POJ 2186 Popular Cows

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31815   Accepted: 12927 De ...

  5. POJ 2186 Popular Cows(强连通)

                                                                  Popular Cows Time Limit: 2000MS   Memo ...

  6. poj 2186 Popular Cows (强连通分量+缩点)

    http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  7. poj 2186 Popular Cows【tarjan求scc个数&&缩点】【求一个图中可以到达其余所有任意点的点的个数】

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27698   Accepted: 11148 De ...

  8. POJ2186 Popular Cows 【强连通分量】+【Kosaraju】+【Tarjan】+【Garbow】

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 23445   Accepted: 9605 Des ...

  9. POJ 2186 Popular Cows (强联通)

    id=2186">http://poj.org/problem? id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 655 ...

随机推荐

  1. 计蒜客 Goldbach Miller_Rabin判别法(大素数判别法)

    题目链接:https://nanti.jisuanke.com/t/25985 题目: Description: Goldbach's conjecture is one of the oldest ...

  2. canvas_基于canvan绘制的双半圆环进度条

    效果图 实现原理: 1.使用canvas绘制两个半圆弧,底图灰色半圆弧和颜色进度圆弧. 2.利用setInterval计时器,逐步改变颜色进度条,达到进度条的效果. 效果代码: <!DOCTYP ...

  3. scikit-learn中的岭回归(Ridge Regression)与Lasso回归

    一.岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ. 二.如何调用 class sklearn.lin ...

  4. Linux进程调度与源码分析(二)——进程生命周期与task_struct进程结构体

    1.进程生命周期 Linux操作系统属于多任务操作系统,系统中的每个进程能够分时复用CPU时间片,通过有效的进程调度策略实现多任务并行执行.而进程在被CPU调度运行,等待CPU资源分配以及等待外部事件 ...

  5. 用vue实现登录页面

    vue和mui一起完成登录页面(在hbuilder编辑器) <!DOCTYPE html> <html> <head> <meta charset=" ...

  6. 微信小程序实现图片上传,预览,删除

    wxml: <view class='imgBox'> <image class='imgList' wx:for="{{imgs}}" wx:for-item= ...

  7. dos命令连接mysql并且查看编码方式

    打开cmd: 输入:mysql -hlocalhost -uroot -p 然后: show variables like 'char%';

  8. JavaSE项目之聊天室swing版

    引子: 当前,互联网 体系结构的参考模型主要有两种,一种是OSI参考模型,另一种是TCP/IP参考模型. 一.OSI参考模型,即开放式通信系统互联参考模型(OSI/RM,Open Systems In ...

  9. FineReport——JS二次开发(局部刷新)

    在FR中,可以通过在form表单设置多个报表模板,然后通过对某一模板刷新实现局部刷新的功能,在cpt模板中,由于只存在一个模板,所以无法实现局部刷新. 其实,最好的局部刷新办法是自定义一个页面,然后添 ...

  10. 数据库SQL调优之"执行计划"【未完待续】

    什么是“执行计划”?“执行计划”怎么用于SQL调优? 内容待添加... 参考文章: [1]写SQL要学会使用"执行计划" by 鹏霄万里展雄飞