题目

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int n,Aix,Aiy,Cnt;
int Map[1000][1000];
void Dac(int Stx,int Sty,int Dep,int Tx,int Ty,int Pas) {
if(Dep == 1) {
return;
}
int Tmp = Dep / 2;
int a = 0,b = 0,c = 0,d = 0;
if(Tx < Stx + Tmp && Ty < Sty + Tmp) { //左上
Dac(Stx,Sty,Tmp,Tx,Ty,1);
} else {
int Sx = Stx + Tmp - 1;
int Sy = Sty + Tmp - 1;
a = 1;
Dac(Stx,Sty,Tmp,Sx,Sy,1);
} if(Tx < Stx + Tmp && Ty >= Sty + Tmp) { //左下
Dac(Stx,Sty + Tmp,Tmp,Tx,Ty,2);
} else {
int Sx = Stx + Tmp - 1;
int Sy = Sty + Tmp;
b = 1;
// printf("%d %d %d\n",Sx,Sy,2);
Dac(Stx,Sty + Tmp,Tmp,Sx,Sy,2);
} if(Tx >= Stx + Tmp && Ty < Sty + Tmp) {
Dac(Stx + Tmp,Sty,Tmp,Tx,Ty,3);
} else {
int Sx = Stx + Tmp;
int Sy = Sty + Tmp - 1;
c = 1;
Dac(Stx + Tmp,Sty,Tmp,Sx,Sy,3);
} if(Tx >= Stx + Tmp && Ty >= Sty + Tmp) {
Dac(Stx + Tmp,Sty + Tmp,Tmp,Tx,Ty,4);
} else {
int Sx = Stx + Tmp;
int Sy = Sty + Tmp;
d = 1;
Dac(Stx + Tmp,Sty + Tmp,Tmp,Sx,Sy,4);
}
if(!d) {
printf("%d %d %d\n",Stx + Tmp,Sty + Tmp,1);
} else if(!c) {
printf("%d %d %d\n",Stx + Tmp,Sty + Tmp,2);
} else if(!b) {
printf("%d %d %d\n",Stx + Tmp,Sty + Tmp,3);
} else if(!a){
printf("%d %d %d\n",Stx + Tmp,Sty + Tmp,4);
}
}
int main() {
scanf("%d%d%d",&n,&Aix,&Aiy);
n = (1 << n);
Dac(0,0,n,Aix - 1,Aiy - 1,0);
return 0;
}

棋盘覆盖(我们学校自己的UOJ上的变形题)的更多相关文章

  1. NYOJ 45 棋盘覆盖 模拟+高精度

    题意就不说了,中文题... 小白上讲了棋盘覆盖,于是我就挖了这题来做. 棋盘覆盖的推导不是很难理解,就是分治的思想,具体可以去谷歌下. 公式就是f(k) = f(k - 1) * 4 + 1,再化解下 ...

  2. CODEVS 2171 棋盘覆盖

    2171 棋盘覆盖 给出一张nn(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多少12的多米诺骨牌进行掩盖. 错误日志: 直接在模板上调整 \(maxn\) 时没有在相应邻接表数 ...

  3. 棋盘覆盖问题 (粉书 P230 【递归】** )

    转载自:http://blog.csdn.net/akof1314/article/details/5423608  (赞) 在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其它方格不 ...

  4. js算法:分治法-棋盘覆盖

    在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其他方格不同.则称该方格为一特殊方格,称该棋盘为一特殊棋盘.显然特殊方格在棋盘上出现的位置有 4^k 种情形.因而对不论什么 k> ...

  5. bzoj 2706: [SDOI2012]棋盘覆盖 Dancing Link

    2706: [SDOI2012]棋盘覆盖 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 255  Solved: 77[Submit][Status] ...

  6. NYOJ 45 棋盘覆盖

    棋盘覆盖 水题,题不难,找公式难 import java.math.BigInteger; import java.util.Scanner; public class Main { public s ...

  7. 棋盘覆盖(大数阶乘,大数相除 + java)

    棋盘覆盖 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的 ...

  8. 棋盘覆盖(一) ACM

    棋盘覆盖 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的2×2方格(图2为其中缺右下角的一个),去覆盖2k×2k未被覆盖过的方格,求 ...

  9. 棋盘覆盖问题(算法分析)(Java版)

    1.问题描述: 在一个2k×2k个方格组成的棋盘中,若有一个方格与其他方格不同,则称该方格为一特殊方格,且称该棋盘为一个特殊棋盘.显然特殊方格在棋盘上出现的位置有种情形.因而对任何 k≥0,有4k种不 ...

随机推荐

  1. 沉淀,再出发:Maven的使用和规范

    沉淀,再出发:Maven的使用和规范 一.前言 Maven作为项目管理工具,在一个大型项目开发的每个阶段都有着很大的用处,为什么需要这个东西呢,还是为了消除不确定性,统一化管理,正如我们做的每一件事其 ...

  2. yii2.0发送qq邮件详情配置

    首先要想使用qq发送邮件必须打开使用的qq邮箱里的一个配置,

  3. Java集合工具类

    import java.util.ArrayList; import java.util.Collection; import java.util.List; import java.util.Map ...

  4. mysql多实例mysqld_multi方式

    mysql多实例应用,亲测直接执行脚本可使用,可快速部署多实例环境 #!/bin/bash set -e #定义mysql_multi多实例数据的配置,如需增加,在后面函数对应地方需要增加 mydir ...

  5. January 22 2017 Week 4 Sunday

    Dare and the world always yields. 大胆挑战,世界总会让步. Try it if you dare. If you want to change, if you wan ...

  6. Pinball Save Earth 正式上线

    有问题或者建议大家可以联系我的QQ 914287516 或者qq邮箱 官方qq群 325631077:

  7. 从数据库反向生成django的models

    有办法实现django 数据库反向生成models的方法吗?答案是肯定的. 1. 配置 settings.py 中的数据库配置部分 DATABASES = { 'default': { 'ENGINE ...

  8. 20165322 第九周 实现mypwd

    实现mypwd 学习pwd man pwd 该命令用来显示目前所在的工作目录 参数 -P显示当前目录的物理路径 -L显示当前目录的连接路径 man -k dir | grep 2 由图可知,可以用ge ...

  9. 【[JLOI2013]卡牌游戏】

    思路太妙了 刚开始yy出了一种比较自然的dp方法,就是按照游戏的进行来开始dp,设\(dp[i][j]\)表示第\(i\)个人为庄家,还剩下\(j\)个人的概率为多少,但是很快发现这个样子没法转移,因 ...

  10. EOJ Monthly 2019.1 唐纳德先生与这真的是签到题吗 【数学+暴力+multiset】

    传送门:https://acm.ecnu.edu.cn/contest/126/ C. 唐纳德先生与这真的是签到题吗 单测试点时限: 6.0 秒 内存限制: 1024 MB 唐纳德先生在出月赛的过程中 ...