题目

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
int n,Aix,Aiy,Cnt;
int Map[1000][1000];
void Dac(int Stx,int Sty,int Dep,int Tx,int Ty,int Pas) {
if(Dep == 1) {
return;
}
int Tmp = Dep / 2;
int a = 0,b = 0,c = 0,d = 0;
if(Tx < Stx + Tmp && Ty < Sty + Tmp) { //左上
Dac(Stx,Sty,Tmp,Tx,Ty,1);
} else {
int Sx = Stx + Tmp - 1;
int Sy = Sty + Tmp - 1;
a = 1;
Dac(Stx,Sty,Tmp,Sx,Sy,1);
} if(Tx < Stx + Tmp && Ty >= Sty + Tmp) { //左下
Dac(Stx,Sty + Tmp,Tmp,Tx,Ty,2);
} else {
int Sx = Stx + Tmp - 1;
int Sy = Sty + Tmp;
b = 1;
// printf("%d %d %d\n",Sx,Sy,2);
Dac(Stx,Sty + Tmp,Tmp,Sx,Sy,2);
} if(Tx >= Stx + Tmp && Ty < Sty + Tmp) {
Dac(Stx + Tmp,Sty,Tmp,Tx,Ty,3);
} else {
int Sx = Stx + Tmp;
int Sy = Sty + Tmp - 1;
c = 1;
Dac(Stx + Tmp,Sty,Tmp,Sx,Sy,3);
} if(Tx >= Stx + Tmp && Ty >= Sty + Tmp) {
Dac(Stx + Tmp,Sty + Tmp,Tmp,Tx,Ty,4);
} else {
int Sx = Stx + Tmp;
int Sy = Sty + Tmp;
d = 1;
Dac(Stx + Tmp,Sty + Tmp,Tmp,Sx,Sy,4);
}
if(!d) {
printf("%d %d %d\n",Stx + Tmp,Sty + Tmp,1);
} else if(!c) {
printf("%d %d %d\n",Stx + Tmp,Sty + Tmp,2);
} else if(!b) {
printf("%d %d %d\n",Stx + Tmp,Sty + Tmp,3);
} else if(!a){
printf("%d %d %d\n",Stx + Tmp,Sty + Tmp,4);
}
}
int main() {
scanf("%d%d%d",&n,&Aix,&Aiy);
n = (1 << n);
Dac(0,0,n,Aix - 1,Aiy - 1,0);
return 0;
}

棋盘覆盖(我们学校自己的UOJ上的变形题)的更多相关文章

  1. NYOJ 45 棋盘覆盖 模拟+高精度

    题意就不说了,中文题... 小白上讲了棋盘覆盖,于是我就挖了这题来做. 棋盘覆盖的推导不是很难理解,就是分治的思想,具体可以去谷歌下. 公式就是f(k) = f(k - 1) * 4 + 1,再化解下 ...

  2. CODEVS 2171 棋盘覆盖

    2171 棋盘覆盖 给出一张nn(n<=100)的国际象棋棋盘,其中被删除了一些点,问可以使用多少12的多米诺骨牌进行掩盖. 错误日志: 直接在模板上调整 \(maxn\) 时没有在相应邻接表数 ...

  3. 棋盘覆盖问题 (粉书 P230 【递归】** )

    转载自:http://blog.csdn.net/akof1314/article/details/5423608  (赞) 在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其它方格不 ...

  4. js算法:分治法-棋盘覆盖

    在一个 2^k * 2^k 个方格组成的棋盘中,若恰有一个方格与其他方格不同.则称该方格为一特殊方格,称该棋盘为一特殊棋盘.显然特殊方格在棋盘上出现的位置有 4^k 种情形.因而对不论什么 k> ...

  5. bzoj 2706: [SDOI2012]棋盘覆盖 Dancing Link

    2706: [SDOI2012]棋盘覆盖 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 255  Solved: 77[Submit][Status] ...

  6. NYOJ 45 棋盘覆盖

    棋盘覆盖 水题,题不难,找公式难 import java.math.BigInteger; import java.util.Scanner; public class Main { public s ...

  7. 棋盘覆盖(大数阶乘,大数相除 + java)

    棋盘覆盖 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的 ...

  8. 棋盘覆盖(一) ACM

    棋盘覆盖 描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的2×2方格(图2为其中缺右下角的一个),去覆盖2k×2k未被覆盖过的方格,求 ...

  9. 棋盘覆盖问题(算法分析)(Java版)

    1.问题描述: 在一个2k×2k个方格组成的棋盘中,若有一个方格与其他方格不同,则称该方格为一特殊方格,且称该棋盘为一个特殊棋盘.显然特殊方格在棋盘上出现的位置有种情形.因而对任何 k≥0,有4k种不 ...

随机推荐

  1. Doing Research Needs Efforts

    What is research?   From YouTube Video or baiduyun Links What does not? spend many hours before you ...

  2. 第三周 day3 python学习笔记

    1.字符串str类型,不支持修改. 2.关于集合的学习: (1)将列表转成集合set:集合(set)是无序的,集合中不会出现重复元素--互不相同 (2)集合的操作:交集,并集.差集.对称差集.父集.子 ...

  3. 035server端并发聊天

    import socketserver class MyServer(socketserver.BaseRequestHandler): def handle(self): # 里面是每个客户端连接执 ...

  4. WAS8.5安装和部署

    刚研究WAS8.5的安装部署,写一些注意事项: 1.下载安装软件 安装器:agent.installer.linux.gtk.x86_64_1.7.2000.20140227_0303 WAS: WA ...

  5. The Relationship Between Layers and Views

    Layers provide infrastructure for your views. 内核与外壳:数据与封装的关系.

  6. Yii自定义验证规则

    简单的方法:在 model 内部定义规则 最简单的定义验证规则的方法是在使用它的模型(model)内部定义. 比方说,你要检查用户的密码是否足够安全. 通常情况下你会使用 CRegularExpres ...

  7. 牛客网多校训练第一场 A - Monotonic Matrix(Lindström–Gessel–Viennot lemma)

    链接: https://www.nowcoder.com/acm/contest/139/A 题意: 求满足以下条件的n*m矩阵A的数量模(1e9+7):A(i,j) ∈ {0,1,2}, 1≤i≤n ...

  8. UVA11987 【Almost Union-Find】

    这是一道神奇的题目,我调了大概一天多吧 首先hack一下翻译,操作3并没有要求查询后从其所在集合里删除该元素 于是我们来看一下这三个操作 第一个合并属于并查集的常规操作 第三个操作加权并查集也是可以解 ...

  9. python 爬取猫眼下的榜单(一)--单个页面

    #!/usr/bin/env python # -*- coding: utf- -*- # @Author: Dang Kai # @Date: -- :: # @Last Modified tim ...

  10. 2019.1.1 在重写的方法上面添加@Override注解方法报错解决办法

    报错代码 The method transfer(Integer, Integer, Double) of type AccountServiceImpl must override a superc ...