官方题解不是很详细

首先有一个结论:若A=pa+sa B=pb+sb

A、B串循环同构,则可以构造一个可行方案(pa,sb) (sa,pb)中有一个是最长匹配,这个不难用反证法证明。

对于s1,s2串,我们穷举s1的每一个后缀i,设s1[i..i+len-1]=s2[0..len-1] len是最长匹配

那么不难得到,如果存在k使得k<=len且s1[0..i-1]=s2[k..k+i-1]

那么,两串前缀s1[0..i+k-1]为循环同构

因此我们预处理w[i][j]表示s1[0..i]=s2[j..j+i]是否相等,w数组我们可用bitset压位存储

求出这个数组我们只需要建立后缀数组然后顺着height[]找即可

下面我们在将变量代换,前缀p=i+k-1循环同构的条件为i-1<=p<=len+i-1且w[i-1][p]为1

这个条件我们在压位的情况下可以用位运算处理

问题得解

 #include<bits/stdc++.h>

 using namespace std;
bitset<> w[],ans,pre[],tmp;
char s2[],s1[];
int d[],lg[],h[],s[],rk[],sa[],x[],y[],a[];
int f[][],n;
pair<int,int> q[];
bool cmp(int a,int b,int j)
{
if (y[a]==y[b])
{
if (a+j<=n&&b+j<=n) return y[a+j]!=y[b+j];
else if (a+j>n&&b+j>n) return ;
else return ;
}
return y[a]!=y[b];
} void suffix()
{
int m=;
memset(s,,sizeof(s));
for (int i=; i<=n; i++) s[a[i]]++;
for (int i=; i<=m; i++) s[i]+=s[i-];
for (int i=n; i; i--) sa[s[a[i]]--]=i;
int p=; rk[sa[]]=;
for (int i=; i<=n; i++)
{
if (a[sa[i]]!=a[sa[i-]]) ++p;
rk[sa[i]]=p;
}
int j=; m=p;
while (m<n)
{
memcpy(y,rk,sizeof(rk));
memset(s,,sizeof(s));
p=;
for (int i=n-j+; i<=n; i++) x[++p]=i;
for (int i=; i<=n; i++)
if (sa[i]>j) x[++p]=sa[i]-j;
for (int i=; i<=n; i++) s[rk[i]=y[x[i]]]++;
for (int i=; i<=m; i++) s[i]+=s[i-];
for (int i=n; i; i--) sa[s[rk[i]]--]=x[i];
rk[sa[]]=; p=;
for (int i=; i<=n; i++)
{
if (cmp(sa[i],sa[i-],j)) ++p;
rk[sa[i]]=p;
}
m=p; j<<=;
}
p=; h[]=;
for (int i=; i<=n; i++)
{
if (rk[i]==) continue;
int j=sa[rk[i]-];
while (i+p<=n&&j+p<=n&&a[i+p]==a[j+p]) ++p;
h[rk[i]]=p;
if (p) p--;
}
} int ask(int x,int y)
{
int k=lg[y-x+];
return min(f[x][k],f[y-d[k]+][k]);
} void rmq()
{
for (int i=; i<=n; i++)
f[i][]=h[i];
for (int j=; j<=lg[n]; j++)
{
for (int i=; i<=n; i++)
if (i+d[j]-<=n) f[i][j]=min(f[i][j-],f[i+d[j-]][j-]);
else break;
}
} int main()
{
// freopen("1002.in","r",stdin);
d[]=; lg[]=;
for (int i=; i<=; i++)
{
d[i]=d[i-]*;
for (int j=d[i-]; j<=min(,d[i]-); j++) lg[j]=i-;
}
pre[][]=;
for (int i=; i<; i++)
{
pre[i]=pre[i-];
pre[i][i]=;
}
while (scanf("%s%s",s1,s2)!=EOF)
{
int l=strlen(s1);
n=;
for (int i=; i<l; i++) a[++n]=s1[i]-'a'+;
a[++n]=;
for (int i=; i<l; i++) a[++n]=s2[i]-'a'+;
a[n+]=;
suffix(); rmq();
for (int i=; i<l; i++) w[i].reset();
int len=n,m=;
for (int i=rk[]+; i<=n; i++)
{
len=min(len,h[i]);
if (!len) break;
else if (sa[i]>l+) q[++m]=make_pair(len-,sa[i]-l-);
}
len=h[rk[]];
for (int i=rk[]-; i; i--)
{
if (!len) break;
else if (sa[i]>l+) q[++m]=make_pair(len-,sa[i]-l-);
len=min(len,h[i]);
}
sort(q+,q++m);
tmp.reset(); int j=m;
for (int i=l-; i>=; i--)
{
while (j&&q[j].first==i) tmp[q[j--].second]=;
w[i]=tmp;
}
ans.reset();
for (int i=; i<l; i++)
{
int x=rk[i+],y=rk[l+];
if (x>y) swap(x,y);
len=ask(x+,y);
if (len)
{
if (i) ans|=(pre[i-]^pre[i+len-])&(w[i-]<<(i-));
else ans|=pre[len-];
}
}
for (int i=; i<l; i++)
if (ans[i]) printf(""); else printf("");
puts("");
}
}

hdu5782的更多相关文章

随机推荐

  1. nginx基于域名的虚拟主机配置(本地分布式项目域名配置及测试方法)

    最有用的虚拟主机配置方式. 一个域名只能绑定一个ip地址,一个ip地址可以被多个域名绑定. 可以修改host文件实现域名访问. 前提:即使我们在nginx中配置基于域名的虚拟主机,也需要域名解析,即n ...

  2. iOS开发ARC机制下的内存管理技术要点

    转载一篇: iOS开发ARC内存管理技术要点.ARC内存管理原则总结.iOS ARC内存管理总结 ARC内存管理机制 (一)ARC的判断准则: 只要没有任何一个强指针指向该对象,该对象就会被释放. ( ...

  3. Leetcode 234. 回文链表(进阶)

    1.题目描述 请判断一个链表是否为回文链表. 示例 1: 输入: 1->2 输出: false 示例 2: 输入: 1->2->2->1 输出: true 进阶: 你能否用 O ...

  4. HDU1522 稳定婚姻匹配 模板

    Marriage is Stable Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  6. [LeetCode] 2. Add Two Numbers ☆☆

    You are given two non-empty linked lists representing two non-negative integers. The digits are stor ...

  7. jQuery日历签到插件

    插件比较简单,先来看DEMO吧,http://codepen.io/jonechen/pen/bZWdXq: CSS部分: *{margin:0;padding:0;font:14px/1.8 &qu ...

  8. vue调试工具

    在进行vue项目开发的时候,免不了要进行调试,谷歌插件vue-devtools可以帮忙 步骤 步骤一: 到谷歌商店搜索"vue-devtools"下载 步骤二: 在chrome的扩 ...

  9. Solaris 选择使用不同网口的操作

    机器上集成两个物理网口,由于先前使用的网口传输速率特别慢且容易丢包,故换成另一个网口,操作如下: 1.查看物理设备信息-- 显示可用的数据链路 root@238-spa:~# dladm show-p ...

  10. spring项目中web-inf下不能引用页面资源

    1.spring项目结构 2.spring结构说明 web-inf目录是不对外开放的,外部没办法直接访问到(即通过url访问),只有通过映射来访问,如映射一个action或servlet通过服务器端跳 ...