spoj COT2 - Count on a tree II
COT2 - Count on a tree II
http://www.spoj.com/problems/COT2/
You are given a tree with N nodes. The tree nodes are numbered from 1 to N. Each node has an integer weight.
We will ask you to perform the following operation:
- u v : ask for how many different integers that represent the weight of nodes there are on the path from u tov.
Input
In the first line there are two integers N and M. (N <= 40000, M <= 100000)
In the second line there are N integers. The i-th integer denotes the weight of the i-th node.
In the next N-1 lines, each line contains two integers u v, which describes an edge (u, v).
In the next M lines, each line contains two integers u v, which means an operation asking for how many different integers that represent the weight of nodes there are on the path from u to v.
Output
For each operation, print its result.
Example
Input:
8 2
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5
7 8
Output:
4
4
题意:问树上两点间有多少不同的权值
树上莫队
开始狂T,发现自己竟是按节点编号划分的块!!
dfs分块。。
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
#define N 40001
#define M 100001
int n,m,siz,tmp;
int hash[N],key[N];
int front[N],to[N*],nxt[N*],tot;
int fa[N],deep[N],id[N],son[N],bl[N],block[N];
bool vis[N];
int sum[N],ans[M];
struct node
{
int l,r,id;
bool operator < (node p) const
{
if(block[l]!=block[p.l]) return block[l]<block[p.l];
return block[r]<block[p.r];
}
}e[M];
int read(int &x)
{
x=; char c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<='') { x=x*+c-''; c=getchar(); }
}
void add(int x,int y)
{
to[++tot]=y; nxt[tot]=front[x]; front[x]=tot;
to[++tot]=x; nxt[tot]=front[y]; front[y]=tot;
}
void dfs(int x)
{
son[x]++;
for(int i=front[x];i;i=nxt[i])
{
if(to[i]==fa[x]) continue;
deep[to[i]]=deep[x]+;
fa[to[i]]=x;
dfs(to[i]);
son[x]+=son[to[i]];
}
}
void dfs2(int x,int top)
{
id[x]=++tot;
bl[x]=top;
block[x]=(tot-)/siz+;
int y=;
for(int i=front[x];i;i=nxt[i])
{
if(to[i]==fa[x]) continue;
if(son[to[i]]>son[y]) y=to[i];
}
if(!y) return;
dfs2(y,top);
for(int i=front[x];i;i=nxt[i])
{
if(to[i]==fa[x]||to[i]==y) continue;
dfs2(to[i],to[i]);
}
}
void point(int u)
{
if(vis[u]) tmp-=(!--sum[hash[u]]);
else tmp+=(++sum[hash[u]]==);
vis[u]^=;
}
void path(int u,int v)
{
while(u!=v)
{
if(deep[u]>deep[v]) point(u),u=fa[u];
else point(v),v=fa[v];
}
}
int get_lca(int u,int v)
{
while(bl[u]!=bl[v])
{
if(deep[bl[u]]<deep[bl[v]]) swap(u,v);
u=fa[bl[u]];
}
return deep[u]<deep[v] ? u : v;
}
int main()
{
read(n);read(m); siz=sqrt(n);
for(int i=;i<=n;i++) read(key[i]),hash[i]=key[i];
sort(key+,key+n+);
key[]=unique(key+,key+n+)-(key+);
for(int i=;i<=n;i++) hash[i]=lower_bound(key+,key+key[]+,hash[i])-key;
int x,y;
for(int i=;i<n;i++)
{
read(x); read(y);
add(x,y);
}
tot=;
dfs();
dfs2(,);
for(int i=;i<=m;i++)
{
read(e[i].l); read(e[i].r);
e[i].id=i;
}
sort(e+,e+m+);
int L=,R=,lca;
for(int i=;i<=m;i++)
{
if(id[e[i].l]>id[e[i].r]) swap(e[i].l,e[i].r);
path(L,e[i].l);
path(R,e[i].r);
lca=get_lca(e[i].l,e[i].r);
point(lca);
ans[e[i].id]=tmp;
point(lca);
L=e[i].l; R=e[i].r;
}
for(int i=;i<=m;i++) printf("%d\n",ans[i]);
}
spoj COT2 - Count on a tree II的更多相关文章
- SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)
COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from ...
- SPOJ COT2 Count on a tree II(树上莫队)
题目链接:http://www.spoj.com/problems/COT2/ You are given a tree with N nodes.The tree nodes are numbere ...
- SPOJ COT2 Count on a tree II (树上莫队)
题目链接:http://www.spoj.com/problems/COT2/ 参考博客:http://www.cnblogs.com/xcw0754/p/4763804.html上面这个人推导部分写 ...
- spoj COT2 - Count on a tree II 树上莫队
题目链接 http://codeforces.com/blog/entry/43230树上莫队从这里学的, 受益匪浅.. #include <iostream> #include < ...
- SPOJ COT2 Count on a tree II 树上莫队算法
题意: 给出一棵\(n(n \leq 4 \times 10^4)\)个节点的树,每个节点上有个权值,和\(m(m \leq 10^5)\)个询问. 每次询问路径\(u \to v\)上有多少个权值不 ...
- SPOJ COT2 Count on a tree II (树上莫队,倍增算法求LCA)
题意:给一个树图,每个点的点权(比如颜色编号),m个询问,每个询问是一个区间[a,b],图中两点之间唯一路径上有多少个不同点权(即多少种颜色).n<40000,m<100000. 思路:无 ...
- 【SPOJ10707】 COT2 Count on a tree II
SPOJ10707 COT2 Count on a tree II Solution 我会强制在线版本! Solution戳这里 代码实现 #include<stdio.h> #inclu ...
- 【BZOJ2589】 Spoj 10707 Count on a tree II
BZOJ2589 Spoj 10707 Count on a tree II Solution 吐槽:这道题目简直...丧心病狂 如果没有强制在线不就是树上莫队入门题? 如果加了强制在线怎么做? 考虑 ...
- 【SPOJ】Count On A Tree II(树上莫队)
[SPOJ]Count On A Tree II(树上莫队) 题面 洛谷 Vjudge 洛谷上有翻译啦 题解 如果不在树上就是一个很裸很裸的莫队 现在在树上,就是一个很裸很裸的树上莫队啦. #incl ...
随机推荐
- HADOOP docker(四):安装hive
1.hive简介2.安装hive2.1 环境准备2.1.1 下载安装包2.1.2 设置hive用户的环境变量2.1.3 hive服务端配置文件2.1.4 hive客户端配置文件2.1.4 分发hive ...
- 自测之Lesson13:共享内存
题目:创建一个64K的共享内存. 实现代码: #include <stdio.h> #include <sys/ipc.h> #include <sys/shm.h> ...
- 路由器如何设置上网(TP-LINK)
最近宿舍公用的网络一直不太稳定,正赶上毕业季,本来就打算自己买一台自用的路由器,于是我从一个毕业的师姐手里15RMB收了一台路由器,师姐还给了我一根5m的网线和两根全新15m的,感觉光网线就赚翻了. ...
- spring 国际化i18n配置
i18n(其来源是英文单词 internationalization的首末字符i和n,18为中间的字符数)是“国际化”的简称.在资讯领域,国际化(i18n)指让产品(出版物,软件,硬件等)无需做大的改 ...
- 在64位的环境下利用Jet来操作Access,Excel和TXT
For example, you have a 32-bit application that uses the Microsoft OLE DB Provider for Jet. If you m ...
- lol人物模型提取(三)
提取出来的lol人物模型能让你知道一些有趣的信息,比如说给英雄量个身高啥的. 经测量,佐伊的身高应大于1m60,比想象中的着实高不少啊. 然后还应该把这个模型镜像对称一下,在3dsmax里 ...
- SQL局部变量
声明局部变量 局部变量的声明需要使用declare 语句.并且必须以@开头 declare { @varaible_name datatype[,...n] } varaible_name :局部变量 ...
- WPF布局间的切换方法
效果图,两种效果间的切换
- 安装FastDFS+Nginx
安装FastDFS FastDFS开发者的GitHub地址为:https://github.com/happyfish100 打开上述链接,我们点击fastdfs–>release,发现最新版的 ...
- 【bzoj5085】最大 二分+暴力
题目描述 给你一个n×m的矩形,要你找一个子矩形,价值为左上角左下角右上角右下角这四个数的最小值,要你最大化矩形的价值. 输入 第一行两个数n,m,接下来n行每行m个数,用来描述矩形 n, m ≤ 1 ...