Marriage Match III

Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2143    Accepted Submission(s): 646

Problem Description
Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the ever game of play-house . What a happy time as so many friends play together. And it is normal that a fight or a quarrel breaks out, but we will still play together after that, because we are kids.

Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. As you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend.

Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on. On the other hand, in order to play more times of marriage match, every girl can accept any K boys. If a girl chooses a boy, the boy must accept her unconditionally whether they had quarreled before or not.

Now, here is the question for you, how many rounds can these 2n kids totally play this game?

 
Input
There are several test cases. First is an integer T, means the number of test cases. 
Each test case starts with three integer n, m, K and f in a line (3<=n<=250, 0<m<n*n, 0<=f<n). n means there are 2*n children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other. 
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
 
Output
For each case, output a number in one line. The maximal number of Marriage Match the children can play.
 
Sample Input
1
4 5 1 2
1 1
2 3
3 2
4 2
4 4
1 4
2 3
 
Sample Output
3
 
Author
starvae
 
Source
 题意:
有n个女生n个男生,每个女生可以和她喜欢的男生配对也可以和她的朋友喜欢的男生配对还可以和不超过k个不喜欢的男生配对,当所有的人都配对了时游戏结束,要求每一轮游戏中互相已经配对的两个人以后就不能再配对了问可以进行多少轮游戏。
输入t组数据
输入n,m,k,f,表示n对人,m个喜欢关系,f个朋友关系
输入m行a b 表示女生a喜欢男生b
输入f行a b 表示女生a和女生b是朋友
代码:
//和上一道题类似,只不过是加了每个女生可以选k个不喜欢的男生这一条件,类似上一题建图,然后把女生拆点容量为k
//拆点后的点连向她不喜欢的男生容量为1,然后就一样了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
int mp[maxn][maxn],fat[maxn];
int find(int x){
return fat[x]==x?x:fat[x]=find(fat[x]);
}
void connect(int x,int y){
int xx=find(x),yy=find(y);
if(xx!=yy) fat[yy]=xx;
}
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
bool solve(int k,int n,int mid){
dc.init(*n+);
for(int i=;i<=n;i++){
dc.Addedge(,i,mid);
dc.Addedge(i,i+n,k);
for(int j=*n+;j<=*n;j++){
if(mp[i][j])
dc.Addedge(i,j,);
else dc.Addedge(i+n,j,);
}
dc.Addedge(i+*n,*n+,mid);
}
return n*mid==dc.Maxflow(,*n+);
}
int main()
{
int t,n,m,k,f;
scanf("%d",&t);
while(t--){
scanf("%d%d%d%d",&n,&m,&k,&f);
int a,b;
memset(mp,,sizeof(mp));
for(int i=;i<=n;i++) fat[i]=i;
for(int i=;i<=m;i++){
scanf("%d%d",&a,&b);
mp[a][b+*n]=;
}
for(int i=;i<=f;i++){
scanf("%d%d",&a,&b);
connect(a,b);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(find(i)==find(j))
for(int k=*n+;k<=*n;k++)
mp[i][k]=mp[j][k]=(mp[i][k]||mp[j][k]);
}
}
int l=,r=n,mid,ans=;
while(l<=r){
mid=(l+r)/;
if(solve(k,n,mid)){
ans=mid;
l=mid+;
}
else r=mid-;
}
printf("%d\n",ans);
}
return ;
}

HDU 3277 最大流+二分的更多相关文章

  1. HDU 3081 最大流+二分

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. hdu 3228 (最大流+二分)

    题意:一共有N个城市,一些城市里有金矿,一些城市里有仓库,金矿和仓库都有一个容量,有M条边,每条边是双向的,有一个权值,求将所有金矿里的储量都运送到仓库中,所需要经过的道路中,使最大的权值最小 思路: ...

  3. HDU 3277 Marriage Match III(二分+最大流)

    HDU 3277 Marriage Match III 题目链接 题意:n个女孩n个男孩,每一个女孩能够和一些男孩配对,此外还能够和k个随意的男孩配对.然后有些女孩是朋友,满足这个朋友圈里面的人.假设 ...

  4. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  5. HDU 1532 最大流入门

    1.HDU 1532 最大流入门,n个n条边,求第1点到第m点的最大流.只用EK做了一下. #include<bits/stdc++.h> using namespace std; #pr ...

  6. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  7. hdu 3277(二分+最大流+拆点+离线处理+模板问题...)

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. HDU 3277 Marriage Match III(并查集+二分答案+最大流SAP)拆点,经典

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

随机推荐

  1. browsersync 插件

    自从发现了这个 browsersync 插件 ... 在也不用每次改一行代码就去手动刷新 HTML 页面了省去了很多繁琐的操作,当有多个显示器的时候,更加的方便,在IDEA上编辑代码之后,点击 com ...

  2. Ubuntu—终端下重启与关机

    重启命令 :         1.shutdown -r now 立刻重启    2.shutdown -r 10 过10分钟自动重启    3.shutdown -r 20:35 在时间为20:35 ...

  3. LeetCode - 442. Find All Duplicates in an Array - 几种不同思路 - (C++)

    题目 题目链接 Given an array of integers, 1 ≤ a[i] ≤ n (n = size of array), some elements appear twice and ...

  4. SpringCloud IDEA 教学 (四) 断路器(Hystrix)

    写在开始 在SpringCloud项目中,服务之间相互调用(RPC Remote Procedure Call —远程过程调用),处于调用链路底层的服务产生不可用情况时,请求会产生堆积使得服务器线程阻 ...

  5. ServiceStack.Ormlit 使用Insert的时候自增列不会被赋值

    Insert签名是这样的,将第2个参数设置为true就会返回刚插入的自增列ID了,然后可以手工赋值到对象上面去 public static long Insert<T>(this IDbC ...

  6. redis 编译安装错误问题

    编译redis安装的时候报错如下: make[1]: [persist-settings] Error 2 (ignored) CC adlist.o/bin/sh: cc: command not ...

  7. About Dynamic Programming

    Main Point: Dynamic Programming = Divide + Remember + Guess 1. Divide the key is to find the subprob ...

  8. 从零讲JAVA ,给你一条 清晰地学习道路!该学什么就学什么!!

    1.计算机基础: 1.1数据机构基础: 主要学习:1.向量,链表,栈,队列和堆,词典.熟悉2.树,二叉搜索树.熟悉3.图,有向图,无向图,基本概念4.二叉搜索A,B,C类熟练,9大排序熟悉.5.树的前 ...

  9. LintCode-54.转换字符串到整数

    转换字符串到整数 实现atoi这个函数,将一个字符串转换为整数.如果没有合法的整数,返回0.如果整数超出了32位整数的范围,返回INT_MAX(2147483647)如果是正整数,或者INT_MIN( ...

  10. MD5加密的使用

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...