Marriage Match III

Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2143    Accepted Submission(s): 646

Problem Description
Presumably, you all have known the question of stable marriage match. A girl will choose a boy; it is similar as the ever game of play-house . What a happy time as so many friends play together. And it is normal that a fight or a quarrel breaks out, but we will still play together after that, because we are kids.

Now, there are 2n kids, n boys numbered from 1 to n, and n girls numbered from 1 to n. As you know, ladies first. So, every girl can choose a boy first, with whom she has not quarreled, to make up a family. Besides, the girl X can also choose boy Z to be her boyfriend when her friend, girl Y has not quarreled with him. Furthermore, the friendship is mutual, which means a and c are friends provided that a and b are friends and b and c are friend.

Once every girl finds their boyfriends they will start a new round of this game—marriage match. At the end of each round, every girl will start to find a new boyfriend, who she has not chosen before. So the game goes on and on. On the other hand, in order to play more times of marriage match, every girl can accept any K boys. If a girl chooses a boy, the boy must accept her unconditionally whether they had quarreled before or not.

Now, here is the question for you, how many rounds can these 2n kids totally play this game?

 
Input
There are several test cases. First is an integer T, means the number of test cases. 
Each test case starts with three integer n, m, K and f in a line (3<=n<=250, 0<m<n*n, 0<=f<n). n means there are 2*n children, n girls(number from 1 to n) and n boys(number from 1 to n).
Then m lines follow. Each line contains two numbers a and b, means girl a and boy b had never quarreled with each other. 
Then f lines follow. Each line contains two numbers c and d, means girl c and girl d are good friends.
 
Output
For each case, output a number in one line. The maximal number of Marriage Match the children can play.
 
Sample Input
1
4 5 1 2
1 1
2 3
3 2
4 2
4 4
1 4
2 3
 
Sample Output
3
 
Author
starvae
 
Source
 题意:
有n个女生n个男生,每个女生可以和她喜欢的男生配对也可以和她的朋友喜欢的男生配对还可以和不超过k个不喜欢的男生配对,当所有的人都配对了时游戏结束,要求每一轮游戏中互相已经配对的两个人以后就不能再配对了问可以进行多少轮游戏。
输入t组数据
输入n,m,k,f,表示n对人,m个喜欢关系,f个朋友关系
输入m行a b 表示女生a喜欢男生b
输入f行a b 表示女生a和女生b是朋友
代码:
//和上一道题类似,只不过是加了每个女生可以选k个不喜欢的男生这一条件,类似上一题建图,然后把女生拆点容量为k
//拆点后的点连向她不喜欢的男生容量为1,然后就一样了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
int mp[maxn][maxn],fat[maxn];
int find(int x){
return fat[x]==x?x:fat[x]=find(fat[x]);
}
void connect(int x,int y){
int xx=find(x),yy=find(y);
if(xx!=yy) fat[yy]=xx;
}
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
bool solve(int k,int n,int mid){
dc.init(*n+);
for(int i=;i<=n;i++){
dc.Addedge(,i,mid);
dc.Addedge(i,i+n,k);
for(int j=*n+;j<=*n;j++){
if(mp[i][j])
dc.Addedge(i,j,);
else dc.Addedge(i+n,j,);
}
dc.Addedge(i+*n,*n+,mid);
}
return n*mid==dc.Maxflow(,*n+);
}
int main()
{
int t,n,m,k,f;
scanf("%d",&t);
while(t--){
scanf("%d%d%d%d",&n,&m,&k,&f);
int a,b;
memset(mp,,sizeof(mp));
for(int i=;i<=n;i++) fat[i]=i;
for(int i=;i<=m;i++){
scanf("%d%d",&a,&b);
mp[a][b+*n]=;
}
for(int i=;i<=f;i++){
scanf("%d%d",&a,&b);
connect(a,b);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(find(i)==find(j))
for(int k=*n+;k<=*n;k++)
mp[i][k]=mp[j][k]=(mp[i][k]||mp[j][k]);
}
}
int l=,r=n,mid,ans=;
while(l<=r){
mid=(l+r)/;
if(solve(k,n,mid)){
ans=mid;
l=mid+;
}
else r=mid-;
}
printf("%d\n",ans);
}
return ;
}

HDU 3277 最大流+二分的更多相关文章

  1. HDU 3081 最大流+二分

    Marriage Match II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. hdu 3228 (最大流+二分)

    题意:一共有N个城市,一些城市里有金矿,一些城市里有仓库,金矿和仓库都有一个容量,有M条边,每条边是双向的,有一个权值,求将所有金矿里的储量都运送到仓库中,所需要经过的道路中,使最大的权值最小 思路: ...

  3. HDU 3277 Marriage Match III(二分+最大流)

    HDU 3277 Marriage Match III 题目链接 题意:n个女孩n个男孩,每一个女孩能够和一些男孩配对,此外还能够和k个随意的男孩配对.然后有些女孩是朋友,满足这个朋友圈里面的人.假设 ...

  4. HDU 3081 Marriage Match II (网络流,最大流,二分,并查集)

    HDU 3081 Marriage Match II (网络流,最大流,二分,并查集) Description Presumably, you all have known the question ...

  5. HDU 1532 最大流入门

    1.HDU 1532 最大流入门,n个n条边,求第1点到第m点的最大流.只用EK做了一下. #include<bits/stdc++.h> using namespace std; #pr ...

  6. Risk UVA - 12264 拆点法+最大流+二分 最少流量的节点流量尽量多。

    /** 题目:Risk UVA - 12264 链接:https://vjudge.net/problem/UVA-12264 题意:给n个点的无权无向图(n<=100),每个点有一个非负数ai ...

  7. hdu 3277(二分+最大流+拆点+离线处理+模板问题...)

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. HDU 3277 Marriage Match III(并查集+二分答案+最大流SAP)拆点,经典

    Marriage Match III Time Limit: 10000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)

    Cyclic Tour Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)Total ...

随机推荐

  1. c++容器 STL

    2019-01-24 22:30:32 记录学习PAT的一些知识,有待更新 注:本文是对Algorithm 算法笔记 的总结 C++标准库模板(Standard Template Library,ST ...

  2. C语言struct中的长度可变数组(Flexible array member)

    C_struct中的长度可变数组(Flexible array member) Flexible array member is a feature introduced in the C99 sta ...

  3. NFS服务搭建使用

    需求:由于线上业务有一些数据存在了Redis数据库和mysql数据库中了,导致了数据较大迁移起来比较麻烦,所以准备搭建NFS来做WEB的共享磁盘,存储这些数据. 服务端搭建: 查看本机关于nfs的包 ...

  4. Python字符串格式化表达式和格式化方法

    Python格式化字符串由两种方式可以选择:一种是格式化表达式(Formatting Expression),一种是格式化方法(Formatting Method).其中格式化表达式在全Python版 ...

  5. Python中的eval

    Python中的eval方法接受一个字符串参数,并且把字符串里面的内容当成Python代码来执行: eval的缺点是执行速度慢,并且会有安全风险

  6. JavaScript初探系列之面向对象

    面向对象的语言有一个标志,即拥有类的概念,抽象实例对象的公共属性与方法,基于类可以创建任意多个实例对象,一般具有封装.继承.多态的特性!但JS中对象与纯面向对象语言中的对象是不同的,ECMA标准定义J ...

  7. Java中的增强for循环

    增强 for 循环 1. 增强的 for 循环对于遍历 Array 或 Collection 的时候相当方便. import java.util.*; public class Test { publ ...

  8. error : Web 项目“RealEstate.Web”的 URL“http://localhost:20000”已配置为将 IIS 用作 Web 服务器,但是当前在 IIS Express W

    error  : Web 项目"RealEstate.Web"的 URL"http://localhost:20000"已配置为将 IIS 用作 Web 服务器 ...

  9. 软工网络15团队作业4——Alpha阶段敏捷冲刺-4

    一.当天站立式会议照片: 二.项目进展 昨天已完成的工作: 完成程序副界面的设计与信息的输入统计 明天计划完成的工作: 日期等细致信息的处理 工作中遇到的困难: 对微信小程序开发的代码构成有了一些了解 ...

  10. Jmeter系列-webdriver插件

    1.下载地址    JMeterPlugins-WebDriver-1.1.2 2.将JMeterPlugins-WebDriver-1.1.2\lib\ext中的*.jar拷贝到D:\apache- ...