'''
Numpy 和 Pandas 有什么不同 如果用 python 的列表和字典来作比较, 那么可以说 Numpy 是列表形式的,没有数值标签,而 Pandas 就是字典形式。Pandas是基于Numpy构建的,让Numpy为中心的应用变得更加简单。 要使用pandas,首先需要了解他主要两个数据结构:Series和DataFrame。
''' #todo 可以说 Numpy 是列表形式的,没有数值标签,而 Pandas 就是字典形式!! import pandas as pd
import numpy as np
s = pd.Series([1,3,6,np.nan,44,1])#输入的参数是一个列表
#此时s(series)包含了三个部分 1.索引 2.数据 3.数据类型dtype
print(s)
"""
0 1.0
1 3.0
2 6.0
3 NaN
4 44.0
5 1.0
dtype: float64
""" # DataFrame dates = pd.date_range('20160101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d']) print(df)
"""
a b c d
2016-01-01 -0.253065 -2.071051 -0.640515 0.613663
2016-01-02 -1.147178 1.532470 0.989255 -0.499761
2016-01-03 1.221656 -2.390171 1.862914 0.778070
2016-01-04 1.473877 -0.046419 0.610046 0.204672
2016-01-05 -1.584752 -0.700592 1.487264 -1.778293
2016-01-06 0.633675 -1.414157 -0.277066 -0.442545
""" # DataFrame是一个表格型的数据结构,它包含有一组有序的列,每列可以是不同的值类型(数值,字符串,布尔值等)。DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。
# 我们可以根据每一个不同的索引来挑选数据, 比如挑选 b 的元素:
# DataFrame 的一些简单运用 print(df['b'])#挑选b的元素
#此时返回的4各参数 是 1.行索引 2.数值 3.FREQ(频率)?? 4.dtype """
2016-01-01 -2.071051
2016-01-02 1.532470
2016-01-03 -2.390171
2016-01-04 -0.046419
2016-01-05 -0.700592
2016-01-06 -1.414157
Freq: D, Name: b, dtype: float64
""" # 我们在创建一组没有给定行标签和列标签的数据 df1: df1 = pd.DataFrame(np.arange(12).reshape((3,4)))
print(df1)
#此时没有给定index和column 默认返回0开始的索引
"""
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
""" df2 = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(4)), dtype='float32'),
'D': np.array([3] * 4, dtype='int32'),
'E': pd.Categorical(["test", "train", "test", "train"]),
'F': 'foo'}) print(df2) """
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
"""
# 这种方法能对每一列的数据进行特殊对待. 如果想要查看数据中的类型, 我们可以用 dtype 这个属性:
# 这个相当于Excel的表格? print(df2.dtypes)#使用df2.dtype查看每一行的数据类型 """
df2.dtypes
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
""" print(df2.index)
# 如果想看对列的序号: 相当于行号(行的名称) # Int64Index([0, 1, 2, 3], dtype='int64') print(df2.columns)#相当于查看列的名称 # Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object') print(df2.values)#只返回df2的所有值,不返回行号和列号 """
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)
""" # 想知道数据的总结, 可以用 describe(): df2.describe()#使用describe相当于打个总结 返回count mean """
A C D
count 4.0 4.0 4.0
mean 1.0 1.0 3.0
std 0.0 0.0 0.0
min 1.0 1.0 3.0
25% 1.0 1.0 3.0
50% 1.0 1.0 3.0
75% 1.0 1.0 3.0
max 1.0 1.0 3.0
"""
print(df2.T) #转置数据 反转数据 #对数据的index(也就是行号)进行排序并且输出
print(df2.sort_index(axis=1, ascending=False)) #ascending 上升 """
F E D C B A
0 foo test 3 1.0 2013-01-02 1.0
1 foo train 3 1.0 2013-01-02 1.0
2 foo test 3 1.0 2013-01-02 1.0
3 foo train 3 1.0 2013-01-02 1.0
""" # 对数据 值 排序输出: print(df2.sort_values(by='B')) """
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
"""

出处:https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/3-1-pd-intro/

pandas主要的两个数据结构series,dataframe

可以说numpy是列表形式的,没有数据标签,pandas是字典类型的,表格形式的dateframe!!

s = pd.Series([1,3,6,np.nan,44,1])#输入的参数是一个列表   输出包含了三个部分 1.索引 2.数据 3.数据类型dtype


df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=['a','b','c','d'])  相当于生成了一个表格,行是index 列是columns

df2 = pd.DataFrame({'A': 1.,
'B': pd.Timestamp('20130102'),
'C': pd.Series(1, index=list(range(4)), dtype='float32'),
'D': np.array([3] * 4, dtype='int32'),
'E': pd.Categorical(["test", "train", "test", "train"]),
'F': 'foo'})

这是创建的第二种形式,可以看到是按照每列每列的建造,非常的方便啊!在训练神经结构的时候对数据处理的时候起到了很大的作用

dateframe.index 返回行的名称

dateframe.columes 返回列的名称

dateframe.values 返回的只有值

dateframe.describe 打个总结,在预测问题上,对生成的数据进行总结

dateframe.T 转置翻转数据

dateframe.sort_index

dateframe.sort_values  都可以起到排序的作用

pandas的学习1-基本介绍的更多相关文章

  1. 人工智能深度学习Caffe框架介绍,优秀的深度学习架构

    人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...

  2. iOS学习之NSBundle介绍和使用

    iOS学习之NSBundle介绍和使用 http://blog.csdn.net/totogo2010/article/details/7672271 新建一个Single View Applicat ...

  3. ASP.NET Core Web开发学习笔记-1介绍篇

    ASP.NET Core Web开发学习笔记-1介绍篇 给大家说声报歉,从2012年个人情感破裂的那一天,本人的51CTO,CnBlogs,Csdn,QQ,Weboo就再也没有更新过.踏实的生活(曾辞 ...

  4. Oracle GoldenGate学习之Goldengate介绍

    Oracle GoldenGate学习之Goldengate介绍 (2012-10-02 17:07:27) 标签: 检查点 数据传输 队列 进程 分类: Goldengate Goldengate介 ...

  5. pandas的学习总结

    pandas的学习总结 作者:csj更新时间:2017.12.31 email:59888745@qq.com 说明:因内容较多,会不断更新 xxx学习总结: 回主目录:2017 年学习记录和总结 1 ...

  6. JMeter学习工具简单介绍

    JMeter学习工具简单介绍   一.JMeter 介绍 Apache JMeter是100%纯JAVA桌面应用程序,被设计为用于测试客户端/服务端结构的软件(例如web应用程序).它可以用来测试静态 ...

  7. 《从0到1学习Flink》—— 介绍Flink中的Stream Windows

    前言 目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语(例如,"windowin ...

  8. Java并发包下锁学习第一篇:介绍及学习安排

    Java并发包下锁学习第一篇:介绍及学习安排 在Java并发编程中,实现锁的方式有两种,分别是:可以使用同步锁(synchronized关键字的锁),还有lock接口下的锁.从今天起,凯哥将带领大家一 ...

  9. pandas库学习笔记(二)DataFrame入门学习

    Pandas基本介绍——DataFrame入门学习 前篇文章中,小生初步介绍pandas库中的Series结构的创建与运算,今天小生继续“死磕自己”为大家介绍pandas库的另一种最为常见的数据结构D ...

随机推荐

  1. 了解 MySQL的数据行、行溢出机制吗?

    目录 一.行 有哪些格式? 二.紧凑的行格式长啥样? 三.MySQL单行能存多大体量的数据? 四.Compact格式是如何做到紧凑的? 五.什么是行溢出? 六.行 如何溢出? 七.思考一个问题 关注送 ...

  2. 如何在苹果电脑下载器Folx中管理下载列表

    Folx是一款Mas OS专用的下载器,提供了便捷的下载管理.灵活的设置.今天小编准备跟大家聊一聊关于Folx中常见的几种下载管理方式. 一.管理任务状态栏 在Folx下载面板上,可以通过类别查看任务 ...

  3. api4excel - 接口自动化测试excel篇

    api4excel - 接口自动化测试excel篇 工作原理: 测试用例在excel上编辑,使用第三方库xlrd,读取表格sheet和内容,sheetName对应模块名,Jenkins集成服务发现服务 ...

  4. CSP-SJX2019 解题报告

    T1 日期 日高于 \(31\) 或等于 \(00\) 的要修改 \(1\) 次. 月高于 \(12\) 或等于 \(00\) 的要修改 \(1\) 次. 月等于 \(02\) 且日大于 \(28\) ...

  5. 啊这......蚂蚁金服被暂缓上市,员工的大house没了?

      没有想到,网友们前两天才对蚂蚁员工人均一套大 House羡慕嫉妒恨,这两天又因为蚂蚁金服被叫停惋惜.小编看了一下上一篇的时间,正好是11月3日晚上被叫停.太难了!   这中间出现了什么变故呢?原本 ...

  6. 自动化运维工具之Puppet基础入门

    一.简介 puppet是什么?它能做什么? puppet是一个IT基础设施自动化运维工具,它能够帮助系统管理员管理基础设施的整个生命周期:比如,安装服务,提供配置文件,启动服务等等一系列操作:基于pu ...

  7. 红黑树、TreeMap、TreeSet

    事先声明以下代码基于JDK1.8版本 参考资料 大部分图片引自https://www.jianshu.com/p/e136ec79235c侵删 https://www.cnblogs.com/skyw ...

  8. gsap基础一[from,to,fromTo]

    学了几天基础了,感觉总算有点入了一个门的感觉啦,gasp不难,想想一年前我看着官网跟天文一样,今年真的进步很大,在外网发现学习的新世界, 自己的获取知识和查看api源码的能力也增强了许多,现在国内的气 ...

  9. python MD5加密和flask-generate_password_hash

    实际开发过程中,有些数据是需要加密保存或者处理的,为了就是为了保证源数据的安全性.那么MD5加密作为一种简单有效的非对称加密方式在日常开发过程中也经常的被使用到.下面就来介绍下MD5算法: 1.  * ...

  10. 转:关于Python中的lambda,这篇阅读量10万+的文章可能是你见过的最完整的讲解

    lambda是Python编程语言中使用频率较高的一个关键字.那么,什么是lambda?它有哪些用法?网上的文章汗牛充栋,可是把这个讲透的文章却不多.这里,我们通过阅读各方资料,总结了关于Python ...