Kubernetes使用metric-server让HPA弹性伸缩运行
监控架构概述
kubernetes监控指标大体可以分为两类:核心监控指标和自定义指标,核心监控指标是kubernetes内置稳定可靠监控指标,早期由heapster完成,现由metric-server实现;自定义指标用于实现核心指标的扩展,能够提供更丰富的指标支持,如应用状态指标,自定义指标需要通过Aggregator和k8s api集成,当前主流通过promethues实现。
监控指标用途:
- kubectl top 查看node和pod的cpu+内存使用情况
- kubernetes-dashbaord 控制台查看节点和pod资源监控
- Horizontal Pod Autoscaler 水平横向动态扩展
- Scheduler 调度器调度选择条件
metric-server架构和安装
metric-server简介
Metrics Server is a cluster-wide aggregator of resource usage data. Resource metrics are used by components like kubectl top and the Horizontal Pod Autoscaler to scale workloads. To autoscale based upon a custom metric, you need to use the Prometheus Adapter Metric-server是一个集群级别的资源指标收集器,用于收集资源指标数据
- 提供基础资源如CPU、内存监控接口查询;
- 接口通过 Kubernetes aggregator注册到kube-apiserver中;
- 对外通过Metric API暴露给外部访问;
- 自定义指标使用需要借助Prometheus实现。
The Metrics API
- /node 获取所有节点的指标,指标名称为NodeMetrics
- /node/<node_name> 特定节点指标
- /namespaces/{namespace}/pods 获取命名空间下的所有pod指标
- /namespaces/{namespace}/pods/{pod} 特定pod的指标,指标名称为PodMetrics
未来将能够支持指标聚合,如max最大值,min最小值,95th峰值,以及自定义时间窗口,如1h,1d,1w等。
metric-server架构

监控架构分两部分内容:核心监控(图白色部分)和自定义监控(图蓝色部分)
1、 核心监控实现
- 通过kubelet收集资源估算+使用估算
- metric-server负责数据收集,不负责数据存储
- metric-server对外暴露Metric API接口
- 核心监控指标客用户HPA,kubectl top,scheduler和dashboard
2、 自定义监控实现
- 自定义监控指标包括监控指标和服务指标
- 需要在每个node上部署一个agent上报至集群监控agent,如prometheus
- 集群监控agent收集数据后需要将监控指标+服务指标通过API adaptor转换为apiserver能够处理的接口
- HPA通过自定义指标实现更丰富的弹性扩展能力,需要通过HPA adaptor API做次转换。
metric-server部署
1、获取metric-server安装文件,当前具有两个版本:1.7和1.8+,kubernetes1.7版本安装1.7的metric-server版本,kubernetes 1.8后版本安装metric server 1.8+版本,现在最新的版本推荐使用0.3.7 版本
https://github.com/kubernetes-sigs/metrics-server/
2、部署metric-server,部署0.3.7版本
wget https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.3.7/components.yaml
核心的配置文件是metrics-server-deployment.yaml,metric-server以Deployment的方式部署在集群中,镜像k8s.gcr.io/metrics-server-amd64:v0.3.7需要提前下载好,其对应的安装文件内容如下:
# 修改后的metrics-server文件
cat metrics-server-0.3.7.yaml
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: system:aggregated-metrics-reader
  labels:
    rbac.authorization.k8s.io/aggregate-to-view: "true"
    rbac.authorization.k8s.io/aggregate-to-edit: "true"
    rbac.authorization.k8s.io/aggregate-to-admin: "true"
rules:
- apiGroups: ["metrics.k8s.io"]
  resources: ["pods", "nodes"]
  verbs: ["get", "list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: metrics-server:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: metrics-server-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
  name: v1beta1.metrics.k8s.io
spec:
  service:
    name: metrics-server
    namespace: kube-system
  group: metrics.k8s.io
  version: v1beta1
  insecureSkipTLSVerify: true
  groupPriorityMinimum: 100
  versionPriority: 100
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: metrics-server
  namespace: kube-system
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: metrics-server
  namespace: kube-system
  labels:
    k8s-app: metrics-server
spec:
  selector:
    matchLabels:
      k8s-app: metrics-server
  replicas: 1
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
  template:
    metadata:
      name: metrics-server
      labels:
        k8s-app: metrics-server
    spec:
      serviceAccountName: metrics-server
      volumes:
      # mount in tmp so we can safely use from-scratch images and/or read-only containers
      - name: tmp-dir
        emptyDir: {}
      containers:
      - name: metrics-server
        image: k8s.gcr.io/metrics-server/metrics-server:v0.3.7
        imagePullPolicy: IfNotPresent
        args:
          - --cert-dir=/tmp
#          - --v=6
          - --metric-resolution=30s
          - --secure-port=4443
          - --kubelet-insecure-tls
          - --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP
        ports:
        - name: main-port
          containerPort: 4443
          protocol: TCP
       # add livenessProbe
        livenessProbe:
          httpGet:
            path: /healthz
            port: 4443
            scheme: HTTPS
          initialDelaySeconds: 30
          periodSeconds: 30
          successThreshold: 1
          failureThreshold: 3
        readinessProbe:
          httpGet:
            path: /healthz
            port: 4443
            scheme: HTTPS
          initialDelaySeconds: 30
          periodSeconds: 30
          successThreshold: 1
          failureThreshold: 3
        securityContext:
          readOnlyRootFilesystem: true
          runAsNonRoot: true
          runAsUser: 1000
        volumeMounts:
        - name: tmp-dir
          mountPath: /tmp
      nodeSelector:
        kubernetes.io/os: linux
        kubernetes.io/arch: "amd64"
---
apiVersion: v1
kind: Service
metadata:
  name: metrics-server
  namespace: kube-system
  labels:
    kubernetes.io/name: "Metrics-server"
    kubernetes.io/cluster-service: "true"
spec:
  selector:
    k8s-app: metrics-server
  ports:
  - port: 443
    protocol: TCP
    targetPort: main-port
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  - nodes/stats
  - namespaces
  - configmaps
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: system:metrics-server
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:metrics-server
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
3、检查metric-server部署的情况,查看metric-server的Pod已部署成功
[root@localhost metrisc-server]# kubectl get deployments metrics-server -n kube-system
NAME             READY   UP-TO-DATE   AVAILABLE   AGE
metrics-server   0/1     1            0           10s
[root@localhost metrisc-server]# kubectl get pods -n kube-system -l k8s-app=metrics-server
NAME                              READY   STATUS    RESTARTS   AGE
metrics-server-74c4d67d6f-g6rgq   1/1     Running   0          12m
metric-server api测试
1、安装完metric-server后会增加一个metrics.k8s.io/v1beta1的API组,该API组通过Aggregator接入apiserver中
[root@localhost metrisc-server]# kubectl get apiservices.apiregistration.k8s.io |grep metrics-server
v1beta1.metrics.k8s.io                 kube-system/metrics-server   True        13m
2、使用命令行查看kubectl top node的监控信息,可以看到CPU和内存的利用率
[root@localhost metrisc-server]# kubectl top nodes
NAME                 CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%
test-control-plane   48m          4%     1152Mi          38%
3、查看pod监控信息,可以看到pod中CPU和内存的使用情况
kubectl top po
NAME                                    CPU(cores)   MEMORY(bytes)
haproxy-ingress-demo-855c859585-4fj7k   0m           2Mi
haproxy-ingress-demo-855c859585-nf8gl   0m           2Mi
haproxy-ingress-demo-855c859585-nkkv7   0m           2Mi
haproxy-ingress-demo2-744696b97-6hrx5   0m           2Mi
haproxy-ingress-demo2-744696b97-g9n5k   0m           2Mi
haproxy-ingress-demo2-744696b97-r8czj   0m           2Mi
hit-counter-app-77c47576d4-2xhwn        3m           45Mi
4、除了用命令行连接metricc-server获取监控资源,还可以通过API方式链接方式获取,可用API有
- http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/nodes
- http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/nodes/
- http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/pods
- http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/namespace//pods/<pod-name
如下测试API接口的使用:
a、创建一个kube proxy代理,用于链接apiserver,默认将监听在127的8001端口
[root@node-1 ~]# kubectl proxy
Starting to serve on 127.0.0.1:8001
b、查看node列表的监控数据,可以获取到所有node的资源监控数据,usage中包含cpu和memory
[root@node-1 ~]# curl http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/nodes
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  1167  100  1167    0     0   393k      0 --:--:-- --:--:-- --:--:--  569k
{
  "kind": "NodeMetricsList",
  "apiVersion": "metrics.k8s.io/v1beta1",
  "metadata": {
    "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes"
  },
  "items": [
    {
      "metadata": {
        "name": "node-3",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/node-3",
        "creationTimestamp": "2019-12-30T14:23:00Z"
      },
      "timestamp": "2019-12-30T14:22:07Z",
      "window": "30s",
      "usage": {
        "cpu": "32868032n",
        "memory": "1027108Ki"
      }
    },
    {
      "metadata": {
        "name": "node-1",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/node-1",
        "creationTimestamp": "2019-12-30T14:23:00Z"
      },
      "timestamp": "2019-12-30T14:22:07Z",
      "window": "30s",
      "usage": {
        "cpu": "108639556n",
        "memory": "4305356Ki"
      }
    },
    {
      "metadata": {
        "name": "node-2",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/node-2",
        "creationTimestamp": "2019-12-30T14:23:00Z"
      },
      "timestamp": "2019-12-30T14:22:12Z",
      "window": "30s",
      "usage": {
        "cpu": "47607386n",
        "memory": "1119960Ki"
      }
    }
  ]
}
c、指定某个具体的node访问到具体node的资源监控数据
[root@node-1 ~]# curl http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/nodes/node-2
{
  "kind": "NodeMetrics",
  "apiVersion": "metrics.k8s.io/v1beta1",
  "metadata": {
    "name": "node-2",
    "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/node-2",
    "creationTimestamp": "2019-12-30T14:24:39Z"
  },
  "timestamp": "2019-12-30T14:24:12Z",
  "window": "30s",
  "usage": {
    "cpu": "43027609n",
    "memory": "1120168Ki"
  }
}
d、查看所有pod的列表信息
curl http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/pods
e、查看某个具体pod的监控数据
[root@node-1 ~]# curl http://127.0.0.1:8001/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/haproxy-ingress-demo-5d487d4fc-sr8tm
{
  "kind": "PodMetrics",
  "apiVersion": "metrics.k8s.io/v1beta1",
  "metadata": {
    "name": "haproxy-ingress-demo-5d487d4fc-sr8tm",
    "namespace": "default",
    "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/haproxy-ingress-demo-5d487d4fc-sr8tm",
    "creationTimestamp": "2019-12-30T14:36:30Z"
  },
  "timestamp": "2019-12-30T14:36:13Z",
  "window": "30s",
  "containers": [
    {
      "name": "haproxy-ingress-demo",
      "usage": {
        "cpu": "0",
        "memory": "1428Ki"
      }
    }
  ]
}
5、当然也可以通过kubectl -raw的方式访问接口,如调用node-3的数据
[root@node-1 ~]# kubectl get --raw /apis/metrics.k8s.io/v1beta1/nodes/node-3 | jq .
{
  "kind": "NodeMetrics",
  "apiVersion": "metrics.k8s.io/v1beta1",
  "metadata": {
    "name": "node-3",
    "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/node-3",
    "creationTimestamp": "2019-12-30T14:44:46Z"
  },
  "timestamp": "2019-12-30T14:44:09Z",
  "window": "30s",
  "usage": {
    "cpu": "35650151n",
    "memory": "1026820Ki"
  }
}
其他近似的接口有:
kubectl get --raw /apis/metrics.k8s.io/v1beta1/nodes 获取所有node的数据
kubectl get --raw /apis/metrics.k8s.io/v1beta1/nodes/<node_name> 获取特定node数据
kubectl get --raw /apis/metrics.k8s.io/v1beta1/pods 获取所有pod的数据
kubectl get --raw /apis/metrics.k8s.io/v1beta1/namespaces/default/pods/haproxy-ingress-demo-5d487d4fc-sr8tm 获取某个特定pod的数据
HPA水平横向动态扩展
HPA概述
The Horizontal Pod Autoscaler automatically scales the number of pods in a replication controller, deployment, replica set or stateful set based on observed CPU utilization (or, with custom metrics support, on some other application-provided metrics). Note that Horizontal Pod Autoscaling does not apply to objects that can’t be scaled, for example, DaemonSets.
HPA即Horizontal Pod Autoscaler,Pod水平横向动态扩展,即根据应用分配资源使用情况,动态增加或者减少Pod副本数量,以实现集群资源的扩容,其实现机制为:
- HPA需要依赖于监控组件,调用监控数据实现动态伸缩,如调用Metrics API接口
- HPA是二级的副本控制器,建立在Deployments,ReplicaSet,StatefulSets等副本控制器基础之上
- HPA根据获取资源指标不同支持两个版本:v1和v2alpha1
- HPA V1获取核心资源指标,如CPU和内存利用率,通过调用Metric-server API接口实现
- HPA V2获取自定义监控指标,通过Prometheus获取监控数据实现
- HPA根据资源API周期性调整副本数,检测周期horizontal-pod-autoscaler-sync-period定义的值,默认15s
HPA实现
如下开始延时HPA功能的实现,先创建一个Deployment副本控制器,然后再通过HPA定义资源度量策略,当CPU利用率超过requests分配的80%时即扩容。
1、创建Deployment副本控制器
[root@node-1 ~]# cat nginx-test.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: hpa-demo
  name: hpa-demo
spec:
  replicas: 3
  selector:
    matchLabels:
      app: hpa-demo
  template:
    metadata:
      labels:
        app: hpa-demo
    spec:
      containers:
      - image: nginx:1.7.9
        name: nginx
         resources:
          requests:
            cpu: 10m
            memory: 80Mi
---
apiVersion: v1
kind: Service
metadata:
  name: hpa-demo
  namespace: default
spec:
  clusterIP: 10.109.197.67
  ports:
  - port: 80
    protocol: TCP
    targetPort: 80
  selector:
    app: hpa-demo
  type: ClusterIP
[root@node-1 ~]# kubectl get deployments hpa-demo -o yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  annotations:
    deployment.kubernetes.io/revision: "1"
  creationTimestamp: "2019-12-31T01:43:24Z"
  generation: 1
  labels:
    run: hpa-demo
  name: hpa-demo
  namespace: default
  resourceVersion: "14451208"
  selfLink: /apis/extensions/v1beta1/namespaces/default/deployments/hpa-demo
  uid: 3b0f29e8-8606-4e52-8f5b-6c960d396136
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      run: hpa-demo
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
  template:
    metadata:
      creationTimestamp: null
      labels:
        run: hpa-demo
    spec:
      containers:
      - image: nginx:1.7.9
        imagePullPolicy: IfNotPresent
        name: hpa-demo
        ports:
        - containerPort: 80
          protocol: TCP
        resources:
          requests:
            cpu: 200m
            memory: 64Mi
        terminationMessagePath: /dev/termination-log
        terminationMessagePolicy: File
      dnsPolicy: ClusterFirst
      restartPolicy: Always
      schedulerName: default-scheduler
      securityContext: {}
      terminationGracePeriodSeconds: 30
status:
  availableReplicas: 1
  conditions:
  - lastTransitionTime: "2019-12-31T01:43:25Z"
    lastUpdateTime: "2019-12-31T01:43:25Z"
    message: Deployment has minimum availability.
    reason: MinimumReplicasAvailable
    status: "True"
    type: Available
  - lastTransitionTime: "2019-12-31T01:43:24Z"
    lastUpdateTime: "2019-12-31T01:43:25Z"
    message: ReplicaSet "hpa-demo-755bdd875c" has successfully progressed.
    reason: NewReplicaSetAvailable
    status: "True"
    type: Progressing
  observedGeneration: 1
  readyReplicas: 1
  replicas: 1
  updatedReplicas: 1
2、创建HPA控制器,基于CPU实现横向扩展,策略为至少2个Pod,最大5个,targetCPUUtilizationPercentage表示CPU实际使用率占requests百分比
vim hpa-demo.yaml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: hpa-demo
spec:
  maxReplicas: 5
  minReplicas: 2
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: hpa-demo
  targetCPUUtilizationPercentage: 80
3、应用HPA规则并查看详情,由于策略需确保最小2个副本,Deployment默认不是2个副本,因此需要扩容,在详情日志中看到副本扩展至2个
[root@node-1 ~]# kubectl apply -f hpa-demo.yaml
horizontalpodautoscaler.autoscaling/hpa-demo created
#查看HPA列表
[root@node-1 ~]# kubectl get horizontalpodautoscalers.autoscaling
NAME       REFERENCE             TARGETS         MINPODS   MAXPODS   REPLICAS   AGE
hpa-demo   Deployment/hpa-demo   <unknown>/80%   2         5         0          7s
#查看HPA详情
[root@node-1 ~]# kubectl describe horizontalpodautoscalers.autoscaling hpa-demo
Name:                                                  hpa-demo
Namespace:                                             default
Labels:                                                <none>
Annotations:                                           kubectl.kubernetes.io/last-applied-configuration:
                                                         {"apiVersion":"autoscaling/v1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"hpa-demo","namespace":"default"},"spe...
CreationTimestamp:                                     Tue, 31 Dec 2019 09:52:51 +0800
Reference:                                             Deployment/hpa-demo
Metrics:                                               ( current / target )
  resource cpu on pods  (as a percentage of request):  <unknown> / 80%
Min replicas:                                          2
Max replicas:                                          5
Deployment pods:                                       1 current / 2 desired
Conditions:
  Type         Status  Reason            Message
  ----         ------  ------            -------
  AbleToScale  True    SucceededRescale  the HPA controller was able to update the target scale to 2
Events:
  Type    Reason             Age   From                       Message
  ----    ------             ----  ----                       -------
  Normal  SuccessfulRescale  1s    horizontal-pod-autoscaler  New size: 2; reason: Current number of replicas below Spec.MinReplicas #副本扩容至2个,根据MinReplica的策略
4、查看Deployment列表校验确认扩容情况,已达到HPA基础最小化策略
[root@node-1 ~]# kubectl get deployments hpa-demo  --show-labels
NAME       READY   UP-TO-DATE   AVAILABLE   AGE   LABELS
hpa-demo   2/2     2            2           94m   run=hpa-demo
[root@node-1 ~]# kubectl get pods -l run=hpa-demo
NAME                        READY   STATUS    RESTARTS   AGE
hpa-demo-5fcd9c757d-7q4td   1/1     Running   0          5m10s
hpa-demo-5fcd9c757d-cq6k6   1/1     Running   0          10m
5、假如业务增长期间,CPU利用率增高,会自动横向增加Pod来实现,下面开始通过CPU压测来演示Deployment的扩展
[root@node-1 ~]# kubectl exec -it hpa-demo-5fcd9c757d-cq6k6  /bin/bash
root@hpa-demo-5fcd9c757d-cq6k6:/#  dd if=/dev/zero of=/dev/null 
再次查看HPA的日志,提示已扩容,原因是cpu resource utilization (percentage of request) above target,即CPU资源利用率超过requests设置的百分比
[root@node-1 ~]# kubectl describe horizontalpodautoscalers.autoscaling hpa-demo
Name:                                                  hpa-demo
Namespace:                                             default
Labels:                                                <none>
Annotations:                                           kubectl.kubernetes.io/last-applied-configuration:
                                                         {"apiVersion":"autoscaling/v1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"hpa-demo","namespace":"default"},"spe...
CreationTimestamp:                                     Tue, 31 Dec 2019 09:52:51 +0800
Reference:                                             Deployment/hpa-demo
Metrics:                                               ( current / target )
  resource cpu on pods  (as a percentage of request):  99% (199m) / 80%
Min replicas:                                          2
Max replicas:                                          5
Deployment pods:                                       5 current / 5 desired
Conditions:
  Type            Status  Reason            Message
  ----            ------  ------            -------
  AbleToScale     True    ReadyForNewScale  recommended size matches current size
  ScalingActive   True    ValidMetricFound  the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request)
  ScalingLimited  True    TooManyReplicas   the desired replica count is more than the maximum replica count
Events:
  Type     Reason                   Age                   From                       Message
  ----     ------                   ----                  ----                       -------
  Normal   SuccessfulRescale        8m2s                  horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target
查看副本的个数,确认扩容情况,已成功扩容至5个
[root@node-1 ~]# kubectl get pods
NAME                                   READY   STATUS    RESTARTS   AGE
hpa-demo-5fcd9c757d-7q4td              1/1     Running   0          16m
hpa-demo-5fcd9c757d-cq6k6              1/1     Running   0          21m
hpa-demo-5fcd9c757d-jmb6w              1/1     Running   0          16m
hpa-demo-5fcd9c757d-lpxk8              1/1     Running   0          16m
hpa-demo-5fcd9c757d-zs6cg              1/1     Running   0          21m
6、停止CPU压测业务,HPA会自定缩减Pod的副本个数,直至满足条件
[root@node-1 ~]# kubectl describe horizontalpodautoscalers.autoscaling hpa-demo
Name:                                                  hpa-demo
Namespace:                                             default
Labels:                                                <none>
Annotations:                                           kubectl.kubernetes.io/last-applied-configuration:
                                                         {"apiVersion":"autoscaling/v1","kind":"HorizontalPodAutoscaler","metadata":{"annotations":{},"name":"hpa-demo","namespace":"default"},"spe...
CreationTimestamp:                                     Tue, 31 Dec 2019 09:52:51 +0800
Reference:                                             Deployment/hpa-demo
Metrics:                                               ( current / target )
  resource cpu on pods  (as a percentage of request):  0% (0) / 80%
Min replicas:                                          2
Max replicas:                                          5
Deployment pods:                                       2 current / 2 desired
Conditions:
  Type            Status  Reason            Message
  ----            ------  ------            -------
  AbleToScale     True    ReadyForNewScale  recommended size matches current size
  ScalingActive   True    ValidMetricFound  the HPA was able to successfully calculate a replica count from cpu resource utilization (percentage of request)
  ScalingLimited  True    TooFewReplicas    the desired replica count is increasing faster than the maximum scale rate
Events:
  Type     Reason                   Age                   From                       Message
  ----     ------                   ----                  ----                       -------
  Normal   SuccessfulRescale        18m                   horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target
  Normal   SuccessfulRescale        113s                  horizontal-pod-autoscaler  New size: 2; reason: All metrics below target   #缩减至2个pod副本
确认副本的个数,已缩减至最小数量2个
[root@node-1 ~]# kubectl get pods -l run=hpa-demo
NAME                        READY   STATUS    RESTARTS   AGE
hpa-demo-5fcd9c757d-cq6k6   1/1     Running   0          24m
hpa-demo-5fcd9c757d-zs6cg   1/1     Running   0          24m
通过上面的例子可以知道,HPA可以基于metric-server提供的API监控数据实现水平动态弹性扩展的需求,从而可以根据业务CPU使用情况,动态水平横向扩展,保障业务的可用性。当前HPA V1扩展使用指标只能基于CPU分配使用率进行扩展,功能相对有限,更丰富的功能需要由HPA V2版来实现,其由不同的API来实现:
- metrics.k8s.io 资源指标API,通过metric-server提供,提供node和pod的cpu,内存资源查询;
- custom.metrics.k8s.io 自定义指标,通过adapter和kube-apiserver集成,如promethues;
- external.metrics.k8s.io 外部指标,和自定义指标类似,需要通过adapter和k8s集成。
参考文献
资源指标说明:https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/
部署官方说明:(https://github.com/kubernetes-sigs/metrics-server)
参考文档:https://cloud.tencent.com/developer/article/1579216
Kubernetes使用metric-server让HPA弹性伸缩运行的更多相关文章
- Kubernetes 基于 Metrics Server 与 HPA 的使用
		在 Kubernetes 中可以手动通过 kubectl scale 命令或通过修改 replicas 数量,可以实现 Pod 的扩容或缩容.Kubernetes 中还提供了 HPA(Horizont ... 
- Effective HPA:预测未来的弹性伸缩产品
		作者 胡启明,腾讯云专家工程师,专注 Kubernetes.降本增效等云原生领域,Crane 核心开发工程师,现负责成本优化开源项目 Crane 开源治理和弹性能力落地工作. 余宇飞,腾讯云专家工程师 ... 
- Kubernetes 弹性伸缩全场景解析 (一)- 概念延伸与组件布局
		传统弹性伸缩的困境 弹性伸缩是Kubernetes中被大家关注的一大亮点,在讨论相关的组件和实现方案之前.首先想先给大家扩充下弹性伸缩的边界与定义,传统意义上来讲,弹性伸缩主要解决的问题是容量规划与实 ... 
- Kubernetes 弹性伸缩全场景解析 (一):概念延伸与组件布局
		传统弹性伸缩的困境 弹性伸缩是 Kubernetes 中被大家关注的一大亮点,在讨论相关的组件和实现方案之前.首先想先给大家扩充下弹性伸缩的边界与定义,传统意义上来讲,弹性伸缩主要解决的问题是容量规划 ... 
- Kubernetes 弹性伸缩全场景解读(二)- HPA 的原理与演进
		前言 在上一篇文章 Kubernetes 弹性伸缩全场景解析 (一):概念延伸与组件布局中,我们介绍了在 Kubernetes 在处理弹性伸缩时的设计理念以及相关组件的布局,在今天这篇文章中,会为大家 ... 
- Kubernetes 弹性伸缩全场景解析(三) - HPA 实践手册
		在上一篇文章中,给大家介绍和剖析了 HPA 的实现原理以及演进的思路与历程.本文我们将会为大家讲解如何使用 HPA 以及一些需要注意的细节. autoscaling/v1 实践 v1 的模板可能是大家 ... 
- Kubernetes 弹性伸缩HPA功能增强Advanced Horizontal Pod Autoscaler -介绍部署篇
		背景 WHAT(做什么) Advanced Horizontal Pod Autoscaler(简称:AHPA)是kubernetes中HPA的功能增强. 在兼容原生HPA功能基础上,增加预测.执行模 ... 
- 在腾讯云容器服务 TKE 中利用 HPA 实现业务的弹性伸缩
		在 TKE 上利用 HPA 实现业务的弹性伸缩 概述 Kubernetes Pod 水平自动扩缩(Horizontal Pod Autoscaler,以下简称 HPA)可以基于 CPU 利用率.内存利 ... 
- Kubernetes 弹性伸缩全场景解析 (四)- 让核心组件充满弹性
		前言 在本系列的前三篇中,我们介绍了弹性伸缩的整体布局以及HPA的一些原理,HPA的部分还遗留了一些内容需要进行详细解析.在准备这部分内容的期间,会穿插几篇弹性伸缩组件的最佳实践.今天我们要讲解的是 ... 
随机推荐
- VSCode & SQL
			VSCode & SQL MySQL MySQL https://marketplace.visualstudio.com/items?itemName=formulahendry.vscod ... 
- Github history viewer
			Github history viewer https://github.githistory.xyz/ https://github.com/pomber/git-history https://c ... 
- Web 安全 & 反爬虫原理
			Web 安全 & 反爬虫原理 数据加密/解密 HTTPS ip 封锁 请求限制 爬虫识别,canvas 指纹 refs https://segmentfault.com/a/119000001 ... 
- js 位掩码
			原文 定义掩码 const mask0 = parseInt("00000001", 2); const mask1 = parseInt("00000010" ... 
- NGK——解决区块链用户之“难”
			自比特币诞生以来,区块链行业已发展十余年,而且在在金融.民生.司法存证.供应链协同.税务发票.版权保护等领域得到一定程度的应用,但大多属于边缘业务,以探索试点为主,应用深度和广度不足.为什么会这样?是 ... 
- 精密进近OCH的计算
			一.计算步骤 以I类精密进近为例,运行标准的制定大致分为以下几个步骤: 1)确定精密航段的超高障碍物. 2)计算当量高 3)计算高度损失 4)当量高与高度损失相加得到超障高OCH 5)对复飞段障碍物进 ... 
- C++算法代码——标题统计
			题目来自:http://218.5.5.242:9018/JudgeOnline/problem.php?id=2327 题目描述 凯凯刚写了一篇美妙的作文,请问这篇作文的标题中有多少个字符? 注意: ... 
- 20_MySQL表的内连接实操
			-- 查询底薪超过公司平均底薪的员工信息 -- 方法1 SELECT empno,ename FROM t_emp HAVING sal>AVG(sal); 因为在having中不能拿一个字段与 ... 
- Oracle RMAN scripts to delete archivelog
			vi del_arch.shexport ORACLE_SID=pdcsdbrman target / cmdfile=/home/oracle/scripts/del_arch.sql log=/h ... 
- QT实现输入框与下拉框提示并可模糊匹配
			功能:支持下拉框选择.手动输入更改和模糊匹配 组件:QLineEdit.QComboBox.QCompleter.QStringListModel 一.组件介绍 1.1 QLineEdit QLine ... 
