LINK:数列的GCD

题意:

给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N)。

现在问题是,对于1到M的每个整数d,有多少个不同的数列b[1], b[2], ..., b[N],满足:

(1)1<=b[i]<=M(1<=i<=N);

(2)gcd(b[1], b[2], ..., b[N])=d;

(3)恰好有K个位置i使得\(a_i\neq b_i\)(1<=i<=N)

注:gcd(x1,x2,...,xn)为x1, x2, ..., xn的最大公约数。

输出答案对1,000,000,007取模的值。

我没能想出来这道题 感觉有点虚。应该多思考一下的。

有K个位置恰好不相等 n-K个位置恰好相等 设当前处理的gcd为d 那么a序列能和b序列刚好相等的数的个数为M.M为a序列中为d的倍数的个数。

那么有C(M,n-k)的方案 剩下的方案 考虑这M-n+k个位置只有\(\lfloor \frac{M}{d}\rfloor-1\)种可能。

这里注意是排列 不是组合(我傻了想成这里运用隔板法了 剩下的 n-M个位置 就有\(\lfloor \frac{M}{d}\rfloor\)可能。

最后发现 有不合法的情况可以发现不合法的情况为gcd为d的倍数 所以此时把d的倍数的答案都减掉即可。

const int MAXN=300010;
int n,m,k;
int a[MAXN],vis[MAXN];
ll fac[MAXN],inv[MAXN],ans[MAXN];
inline ll ksm(ll b,int p){if(p<0)return 0;ll cnt=1;while(p){if(p&1)cnt=cnt*b%mod;b=b*b%mod;p=p>>1;}return cnt;}
inline ll C(int a,int b){if(a<b)return 0;return fac[a]*inv[b]%mod*inv[a-b]%mod;}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(k);fac[0]=1;k=n-k;
rep(1,n,i)++vis[get(a[i])],fac[i]=fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
fep(n-1,0,i)inv[i]=inv[i+1]*(i+1)%mod;
fep(m,1,i)
{
ll cnt=0,sum=vis[i];
for(int j=2;j*i<=m;++j)cnt=(cnt+ans[j*i])%mod,sum+=vis[i*j];
ans[i]=C(sum,k)*ksm(m/i-1,sum-k)%mod*ksm(m/i,n-sum)%mod;
ans[i]=(ans[i]-cnt+mod)%mod;
}
rep(1,m,i)printf("%lld ",ans[i]);
return 0;
}

bzoj 4305 数列的GCD的更多相关文章

  1. BZOJ 4305: 数列的GCD( 数论 )

    对于d, 记{ai}中是d的倍数的数的个数为c, 那么有: 直接计算即可,复杂度O(NlogN+MlogM) --------------------------------------------- ...

  2. 【BZOJ 4305】 4305: 数列的GCD (数论)

    4305: 数列的GCD Description 给出一个长度为N的数列{a[n]},1<=a[i]<=M(1<=i<=N).  现在问题是,对于1到M的每个整数d,有多少个不 ...

  3. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  4. bzoj 4303 数列

    bzoj 4303 数列 二维 \(KD-Tree\) 模板题. \(KD-Tree\) 虽然在更新和查询的方式上类似于线段树,但其本身定义是类似于用 \(splay/fhq\ treap\) 维护区 ...

  5. [BZOJ 2989]数列(二进制分组+主席树)

    [BZOJ 2989]数列(二进制分组+主席树) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[ ...

  6. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  7. [BZOJ 2989]数列(CDQ 分治+曼哈顿距离与切比雪夫距离的转化)

    [BZOJ 2989]数列(CDQ 分治) 题面 给定一个长度为n的正整数数列a[i]. 定义2个位置的graze值为两者位置差与数值差的和,即graze(x,y)=|x-y|+|a[x]-a[y]| ...

  8. BZOJ.4052.[Cerc2013]Magical GCD(思路)

    BZOJ \(Description\) 给定\(n\)个数的序列\(a_i\).求所有连续子序列中,序列长度 × 该序列中所有数的gcd 的最大值. \(n\leq10^5,\ a_i\leq10^ ...

  9. bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

随机推荐

  1. Python 最强 IDE 详细使用指南!

    PyCharm 是一种 Python IDE,可以帮助程序员节约时间,提高生产效率.那么具体如何使用呢?本文从 PyCharm 安装到插件.外部工具.专业版功能等进行了一一介绍,希望能够帮助到大家.作 ...

  2. Docker-教你如何通过 Docker 快速搭建各种测试环境

    今天给大家分享的主题是,如何通过 Docker 快速搭建各种测试环境,本文列举的,也是作者在工作中经常用到的,其中包括 MySQL.Redis.Elasticsearch.MongoDB 安装步骤,通 ...

  3. Dynamics CRM Data Encrytion error

    Dynamics CRM有两个Database,一个Content DB——xxxx_MSCRM,一个Config DB——MSCRM_CONFIG. 当Content DB从其他环境Restore回 ...

  4. js数组算法题01

    题目:随机生成一个长度为 10 的整数类型的数组,例如 [2, 10, 3, 4, 5, 11, 10, 11, 20],将其排列成一个新数组,要求新数组形式如下,例如 [[2, 3, 4, 5], ...

  5. flask 源码专题(一):app.run()的背后

    当我们用Flask写好一个app后, 运行app.run()表示监听指定的端口, 对收到的request运行app生成response并返回. 现在分析一下, 运行app.run()后具体发生了什么事 ...

  6. 数据可视化基础专题(十):Matplotlib 基础(二) 自定义配置文件和绘图风格(rcParams和style)

    https://matplotlib.org/api/rcsetup_api.html#module-matplotlib.rcsetup 一.什么是rcParams?我们在使用matplotlibl ...

  7. Vue你不得不知道的异步更新机制和nextTick原理

    前言 异步更新是 Vue 核心实现之一,在整体流程中充当着 watcher 更新的调度者这一角色.大部分 watcher 更新都会经过它的处理,在适当时机让更新有序的执行.而 nextTick 作为异 ...

  8. bzoj1745[Usaco2005 oct]Flying Right 飞行航班*

    bzoj1745[Usaco2005 oct]Flying Right 飞行航班 题意: n个农场,有k群牛要从一个农场到另一个农场(每群由一只或几只奶牛组成)飞机白天从农场1到农场n,晚上从农场n到 ...

  9. jdk安装无反应解决方法

    找到该文件(隐藏文件),如果里面是只有空格,清空后重新安装就可以.若有内容设置INSTALL_SILENT=0 后重新安装.

  10. Babel:下一代Javascript语法编译器

    定义 Babel是一个Javascript的编译器,通过它你可以将一些新版本的ECMAScript语法转换成低版本的语法.以便能够在低版本的浏览器或者其它环境平稳运行. 截至目前笔者写这篇文章的时候, ...