LINK:上学路线

从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模.

\(1\leq N,M\leq 10^10 0\leq T\leq 200\)

p=1000003或p=1019663265

考虑dp......(没啥意义.

要求出 从(0,0)到(n,m)不经过一个障碍点的方案数 显然需要容斥. 所有方案C(n+m,n).

还是考虑dp 将T个障碍点排序之后可以发现 后面的点一定不会经过前面的点。

设f[i]表示到达第i个点且不经过前面i-1个点的方案数。我们把终点也当成障碍点 可以发现最后一个f值就是答案辣.

这个是一个很经典的代表元容斥.

考虑到达i这个点 的总方案数 C(\(x_i+y_i,x_i\)).过程中肯定会经过其他的点的。

我们只需要知道经过的第一个不合法的点是谁就可以减掉对应的不合法方案辣。

可以发现这样做把所有的不合法方案都给减掉了。

复杂度T^2. 考虑过程中的组合数怎么做 卢卡斯定理!

P=10000003还好做一点 P=1019663265...

经典套路 摁两下计算器就会了 1019663265=5×3×6793×10007.四个都是质数。

比扩展卢卡斯要简单一点的东西 可以中国剩余定理来解决。

const ll MAXN=1000010,maxn=210;
ll n,m,k,mod,p,xx,yy;
struct wy
{
ll inv[MAXN];
ll fac[MAXN];
ll mod,ans;
}t[5];
ll f[maxn];
struct jl{ll x,y;}s[maxn];
inline ll ksm(ll b,ll p,ll mod)
{
ll cnt=1;//cout<<b<<endl;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
inline void prepare()
{
rep(1,p,i)
{
ll maxx=m(i)-1;t[i].fac[0]=1;
rep(1,maxx,j)t[i].fac[j]=t[i].fac[j-1]*j%m(i);
t[i].inv[maxx]=ksm(t[i].fac[maxx],m(i)-2,m(i));
fep(maxx-1,0,j)t[i].inv[j]=t[i].inv[j+1]*(j+1)%m(i);
}
}
inline ll cmp(jl a,jl b){return a.x==b.x?a.y<b.y:a.x<b.x;}
inline ll C(ll p,ll a,ll b){return t[p].fac[a]*t[p].inv[b]%m(p)*t[p].inv[a-b]%m(p);}
inline ll Lucas(ll p,ll a,ll b)
{
if(a<b)return 0;
if(a<m(p))return C(p,a,b);
return Lucas(p,a/m(p),b/m(p))*Lucas(p,a%m(p),b%m(p))%m(p);
}
inline void exgcd(ll a,ll b)
{
if(!b){xx=1,yy=0;return;}
exgcd(b,a%b);
ll zz=xx;xx=yy;yy=zz-a/b*yy;
}
inline ll INV(ll a,ll b)
{
exgcd(a,b);
return (xx%b+b)%b;
}
inline ll solve(ll a,ll b)
{
rep(1,p,i)ans(i)=Lucas(i,a,b);//,cout<<ans(i)<<endl;
if(p==1)return ans(p);
//中国剩余定理.
ll ans=0;
rep(1,p,i)
{
ll M=mod/m(i);
ll ww=INV(M,m(i));
ans=(ans+M*ww%mod*ans(i))%mod;
}
return ans;
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(k);get(mod);
if(mod==1000003)m(p=1)=mod;
else
{
m(p=1)=3;m(p=2)=5;
m(p=3)=10007;m(p=4)=6793;
}
prepare();//cout<<solve(3,2)<<endl;
rep(1,k,i){ll get(x);s[i]=(jl){x,read()};}
sort(s+1,s+1+k,cmp);
s[++k]=(jl){n,m};
rep(1,k,i)
{
f[i]=solve(s[i].x+s[i].y,s[i].x);
rep(1,i-1,j)if(s[j].y<=s[i].y)
f[i]=(f[i]-f[j]*solve(s[i].x-s[j].x+s[i].y-s[j].y,s[i].x-s[j].x))%mod;
}
put((f[k]+mod)%mod);return 0;
}

又复习了一遍卢卡斯定理 和 中国剩余定理。/ll

bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp的更多相关文章

  1. BZOJ 3782: 上学路线 [Lucas定理 DP]

    3782: 上学路线 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 192  Solved: 75[Submit][Status][Discuss] ...

  2. BZOJ 3782: 上学路 Lucas+ExCRT+容斥+dp

    其实呢,扩展中国剩余定理还有一种理解方式:就是你有一坨东西,形如:$A[i]\equiv B[i](mod$ $P[i])$. 对于这个东西,你可以这么思考:如果最后能求出一个解,那么这个解的增量一定 ...

  3. HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法

    地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Time Limit: 2000/1000 MS (Java/Others)    M ...

  4. BZOJ 3782 上学路线 ——动态规划 Lucas定理 中国剩余定理

    我们枚举第一个经过的坏点,然后DP即可. 状态转移方程不是难点,难点在于组合数的处理. 将狼踩尽的博客中有很详细的证明过程,但是我只记住了结论 $n=a_1 * p^k+a_2*p^k-1...$ $ ...

  5. BZOJ 3782 上学路线

    首先这个题需要dp.dp[i]=C(x[i]+y[i],x[i])-Σdp[j]*C(x[i]-x[j]+y[i]-y[j],x[i]-x[j])(x[i]>=x[j],y[i]>=y[j ...

  6. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  7. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  8. [Hdu-5155] Harry And Magic Box[思维题+容斥,计数Dp]

    Online Judge:Hdu5155 Label:思维题+容斥,计数Dp 题面: 题目描述 给定一个大小为\(N*M\)的神奇盒子,里面每行每列都至少有一个钻石,问可行的排列方案数.由于答案较大, ...

  9. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

随机推荐

  1. PCA算法 | 数据集特征数量太多怎么办?用这个算法对它降维打击!

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第27文章,我们一起来聊聊数据处理领域的降维(dimensionality reduction)算法. 我们都知道,图片 ...

  2. Pop!_OS安装与配置(四):GNOME插件篇

    Pop!_OS安装与配置(四):GNOME插件篇 #0x0 效果图 #0x1 自动安装(不保证成功性) #0x2 OpenWeather #0x3 Topicons Plus #0x4 System- ...

  3. Redis安装与运行讲解

    第一步:安装Redis 打开网址:https://github.com/MicrosoftArchive/redis/releases 因为版本比较多,最新版已经是3.2.100,我们选择3.0.50 ...

  4. Scala 基础(十三):Scala 模式匹配(一)

    1 match 应用案例 Scala的模式匹配 案例代码完整: package com.atguigu.base object MatchDemo { def main(args: Array[Str ...

  5. Scala 面向对象(九):特质(接口) 二

    1 带有具体实现的特质 说明:和Java中的接口不太一样的是特质中的方法并不一定是抽象的,也可以有非抽象方法(即:实现了的方法). 2 带有特质的对象,动态混入 1)除了可以在类声明时继承特质以外,还 ...

  6. 数据可视化之分析篇(十)Power BI应用:如何计算在职员工数量?

    ​https://zhuanlan.zhihu.com/p/128652582 经常碰到的一类问题是,如何根据起止日期来计算某个时间点的数量,比如: 已知合同的生效日期和到期日期,特定日期的有效合同有 ...

  7. 04-Python函数

    一.简介 函数是可重用的程序代码块.函数的作用,不仅可以实现代码的复用,更能实现代码的一致性.一致性指的是,只要修改函数的代码,则所有调用该函数的地方都能得到体现. 函数用关键字def来定义,def关 ...

  8. SSRF漏洞简单分析

    什么是SSRF漏洞 SSRF(服务器端请求伪造)是一种由攻击者构造请求,服务器端发起请求的安全漏洞,所以,一般情况下,SSRF攻击的目标是外网无法访问的内部系统. SSRF漏洞形成原理. SSRF的形 ...

  9. Python 3基础教程8-if else语句

    终于更新到了,教程8, 如果对python软件测试.接口测试.自动化测试.面试经验交流.感兴趣可以加君羊软件测试交流: 1079636098,还会有同行一起技术交流. 本文介绍if else语句,不多 ...

  10. Burp Suite Scanner Module - 扫描模块

    Burp Suite Professional 和Enterprise Version的Scaner功能较丰富. 以Professional版本为例,包含Issue activity, Scan qu ...