Problem Description
Alice gets N strings. Now she has Q questions to ask you. For each question, she wanna know how many different prefix strings between Lth and Rth strings. It's so easy right? So solve it!
 

Input
The input contains multiple test cases.

For each test case, the first line contains one integer N(1≤N≤100000).
Then next N lines contain N strings and the total length of N strings is between 1 and 100000. The next line contains one integer Q(1≤Q≤100000).
We define a specail integer Z=0. For each query, you get two integer L, R(0=<L,R<N). Then the query interval [L,R] is [min((Z+L)%N,(Z+R)%N)+1,max((Z+L)%N,(Z+R)%N)+1]. And Z change to the answer of this query.
 

Output
For each question, output the answer.
 

Sample Input

3
abc
aba
baa
3
0 2
0 1
1 1
 

Sample Output

7
6

3

题意:给你n个字符串,问你第L个字符串到R个字符串中不同前缀的个数,且强制在线。

思路:这题和之前d-query这题很相似,那题问的是区间内不同数的种类。这题问的是不同前缀个数,所以我们可以先把所有的字符串插入到Trie树中,然后每次插入维护每一个节点最后被遍历到的时刻,然后用主席树维护下就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define Key_value ch[ch[root][1]][0]
#define maxn 100050
#define maxnode 1000050
char s[maxn];
int n;
int ch[maxnode][28];
int val[maxnode];
int sz; #define M 1000500*30
int lson[M],rson[M],c[M],T[M];
int th; int build(int l,int r)
{
int i,j,newroot=++th,mid;
c[newroot]=0;
if(l!=r){
mid=(l+r)/2;
lson[newroot]=build(l,mid);
rson[newroot]=build(mid+1,r);
}
return newroot;
} int update(int root,int zhi,int value)
{
int i,j,newroot=++th;
int tmp=newroot;
int l=1,r=n,mid;
c[newroot]=c[root]+value;
while(l<r){
mid=(l+r)/2;
if(zhi<=mid){
r=mid;
lson[newroot]=++th;rson[newroot]=rson[root];
newroot=lson[newroot];root=lson[root];
}
else{
l=mid+1;
lson[newroot]=lson[root];rson[newroot]=++th;
newroot=rson[newroot];root=rson[root]; }
c[newroot]=c[root]+value;
}
return tmp;
} int question(int root,int pos)
{
int i,j;
int sum=0;
int l=1,r=n,mid;
while(l<r){
mid=(l+r)/2;
if(pos<=mid){
r=mid;
sum+=c[rson[root] ];
root=lson[root];
}
else{
l=mid+1;
root=rson[root];
} }
sum+=c[root];
return sum;
} void init(){
sz=0;memset(ch[0],0,sizeof(ch[0]));
memset(val,0,sizeof(val));
}
int idx(char c){
return c-'a';
} void charu(char *s,int tm){
int u=0,len=strlen(s),i,c;
T[tm]=T[tm-1];
for(i=0;i<len;i++){
c=idx(s[i]);
if(!ch[u][c]){
sz++;
memset(ch[sz],0,sizeof(ch[sz]));
val[sz]=tm;
T[tm]=update(T[tm],tm,1);
ch[u][c]=sz;
u=ch[u][c];
}
else if(ch[u][c]){
T[tm]=update(T[tm],val[ch[u][c] ],-1);
val[ch[u][c] ]=tm;
T[tm]=update(T[tm],tm,1);
u=ch[u][c];
}
}
} int main()
{
int m,i,j;
while(scanf("%d",&n)!=EOF)
{
init();
th=0;
T[0]=build(1,n);
for(i=1;i<=n;i++){
scanf("%s",s);
charu(s,i);
}
scanf("%d",&m);
int l,r,z=0,t1,t2;
for(i=1;i<=m;i++){
scanf("%d%d",&l,&r);
l=(z+l)%n+1;
r=(z+r)%n+1;
if(l>r)swap(l,r);
z=question(T[r],l);
printf("%d\n",z);
} }
return 0;
}

hdu5790 Prefix(Trie树+主席树)的更多相关文章

  1. 线段树简单入门 (含普通线段树, zkw线段树, 主席树)

    线段树简单入门 递归版线段树 线段树的定义 线段树, 顾名思义, 就是每个节点表示一个区间. 线段树通常维护一些区间的值, 例如区间和. 比如, 上图 \([2, 5]\) 区间的和, 为以下区间的和 ...

  2. HDU5790 Prefix 字典树+主席树

    分析:这个题和spoj的d_query是一个题,那个是求一段区间里有多少个不同的数字,这里是统计有多少个不同的前缀 用字典树进行判重,(和查询不同的数字一样)对于每个不同的前缀,只保留它最后一次出现的 ...

  3. 【BZOJ3439】Kpm的MC密码 trie树+主席树

    Description 背景 想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的...),于是乎,他现在理所当然地忘记了密码,只能来解答那些神奇的身 ...

  4. HDU 5790 Prefix(Hash + 主席树)

    题目链接  Prefix 题意  给定一个字符串序列,求第$l$个字符串到第$r$个字符串之间有多少个不同的前缀 强制在线 考虑$Hash$ 首先把所有前缀都$hash$出来,按顺序组成一个长度不超过 ...

  5. 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))

    函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...

  6. bzoj 3545&&3551: [ONTAK2010]Peaks &&加强版 平衡树&&并查集合并树&&主席树

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 635  Solved: 177[Submit][Stat ...

  7. BZOJ 4539: [Hnoi2016]树 [主席树 lca]

    4539: [Hnoi2016]树 题意:不想写.复制模板树的子树,查询两点间距离. *** 终于有一道会做的题了...... 画一画发现可以把每次复制的子树看成一个大点来建一棵树,两点的lca一定在 ...

  8. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  9. UOJ#218. 【UNR #1】火车管理 线段树 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和 ...

随机推荐

  1. 集成spring框架的web.xml

    <?xml version="1.0" encoding="UTF-8"?> <web-app version="2.5" ...

  2. 【SpringBoot1.x】SpringBoot1.x 数据访问

    SpringBoot1.x 数据访问 简介 对于数据访问层,无论是 SQL 还是 NOSQL,Spring Boot 默认采用整合 Spring Data 的方式进行统一处理,添加大量自动配置,屏蔽了 ...

  3. Java开发手册之工程结构

    1.在线上生产环境,JVM 的 Xms 和 Xmx 设置一样大小的内存容量,避免在 GC 后调整堆大小带来的压力. 2.给 JVM 环境参数设置-XX:+HeapDumpOnOutOfMemoryEr ...

  4. 【Python】用字母生成图像

    用字母生成图像会用到matplotlib.pyplot库 所以需要安装这个库 pip install matplotlib 等待安装完成即可 ps:由于网络原因,会出现多次的timeout,可以使用国 ...

  5. Pulsar vs Kafka,CTO 如何抉择?

    本文作者为 jesse-anderson.内容由 StreamNative 翻译并整理. 以三个实际使用场景为例,从 CTO 的视角出发,在技术等方面对比 Kafka 和 Pulsar. 阅读本文需要 ...

  6. EntityFramework Core如何映射动态模型?

    前言 本文我们来探讨下映射动态模型的几种方式,相信一部分童鞋项目有这样的需求,比如每天/每小时等生成一张表,此种动态模型映射非常常见,经我摸索,这里给出每一步详细思路,希望能帮助到没有任何头绪的童鞋, ...

  7. python_mmdt:一种基于敏感哈希生成特征向量的python库(一)

    概述 python_mmdt是一种基于敏感哈希的特征向量生成工具.核心算法使用C实现,提高程序执行效率.同时使用python进行封装,方便研究人员使用. 本篇幅主要介绍涉及的相关基本内容与使用,相关内 ...

  8. Amazon Selling Partner API 开发笔记

    资料整理 1.sp-api介绍:https://developer.amazonservices.com/ 2.github文档:https://github.com/amzn/selling-par ...

  9. 部署自动初始化Schema的数据库

    我们使用容器的方式部署数据库组件,特别是企业有大量的项目开发业务的,部署的开发.测试数据库组件较多时.经常会遇到以下问题: 业务需要使用数据库,但部署完数据库后,需要在数据库中执行创建schema的操 ...

  10. WPF和MVVM的结合使用方法,不可错过

    Model:存储数据模型(类) 也在此业务逻辑,主要负责类文件的存储. ViewModel:连接View和Model,借助Command来负责界面的跳转和调用Model中方法来操作Model的数据. ...