Problem Description
Alice gets N strings. Now she has Q questions to ask you. For each question, she wanna know how many different prefix strings between Lth and Rth strings. It's so easy right? So solve it!
 

Input
The input contains multiple test cases.

For each test case, the first line contains one integer N(1≤N≤100000).
Then next N lines contain N strings and the total length of N strings is between 1 and 100000. The next line contains one integer Q(1≤Q≤100000).
We define a specail integer Z=0. For each query, you get two integer L, R(0=<L,R<N). Then the query interval [L,R] is [min((Z+L)%N,(Z+R)%N)+1,max((Z+L)%N,(Z+R)%N)+1]. And Z change to the answer of this query.
 

Output
For each question, output the answer.
 

Sample Input

3
abc
aba
baa
3
0 2
0 1
1 1
 

Sample Output

7
6

3

题意:给你n个字符串,问你第L个字符串到R个字符串中不同前缀的个数,且强制在线。

思路:这题和之前d-query这题很相似,那题问的是区间内不同数的种类。这题问的是不同前缀个数,所以我们可以先把所有的字符串插入到Trie树中,然后每次插入维护每一个节点最后被遍历到的时刻,然后用主席树维护下就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define Key_value ch[ch[root][1]][0]
#define maxn 100050
#define maxnode 1000050
char s[maxn];
int n;
int ch[maxnode][28];
int val[maxnode];
int sz; #define M 1000500*30
int lson[M],rson[M],c[M],T[M];
int th; int build(int l,int r)
{
int i,j,newroot=++th,mid;
c[newroot]=0;
if(l!=r){
mid=(l+r)/2;
lson[newroot]=build(l,mid);
rson[newroot]=build(mid+1,r);
}
return newroot;
} int update(int root,int zhi,int value)
{
int i,j,newroot=++th;
int tmp=newroot;
int l=1,r=n,mid;
c[newroot]=c[root]+value;
while(l<r){
mid=(l+r)/2;
if(zhi<=mid){
r=mid;
lson[newroot]=++th;rson[newroot]=rson[root];
newroot=lson[newroot];root=lson[root];
}
else{
l=mid+1;
lson[newroot]=lson[root];rson[newroot]=++th;
newroot=rson[newroot];root=rson[root]; }
c[newroot]=c[root]+value;
}
return tmp;
} int question(int root,int pos)
{
int i,j;
int sum=0;
int l=1,r=n,mid;
while(l<r){
mid=(l+r)/2;
if(pos<=mid){
r=mid;
sum+=c[rson[root] ];
root=lson[root];
}
else{
l=mid+1;
root=rson[root];
} }
sum+=c[root];
return sum;
} void init(){
sz=0;memset(ch[0],0,sizeof(ch[0]));
memset(val,0,sizeof(val));
}
int idx(char c){
return c-'a';
} void charu(char *s,int tm){
int u=0,len=strlen(s),i,c;
T[tm]=T[tm-1];
for(i=0;i<len;i++){
c=idx(s[i]);
if(!ch[u][c]){
sz++;
memset(ch[sz],0,sizeof(ch[sz]));
val[sz]=tm;
T[tm]=update(T[tm],tm,1);
ch[u][c]=sz;
u=ch[u][c];
}
else if(ch[u][c]){
T[tm]=update(T[tm],val[ch[u][c] ],-1);
val[ch[u][c] ]=tm;
T[tm]=update(T[tm],tm,1);
u=ch[u][c];
}
}
} int main()
{
int m,i,j;
while(scanf("%d",&n)!=EOF)
{
init();
th=0;
T[0]=build(1,n);
for(i=1;i<=n;i++){
scanf("%s",s);
charu(s,i);
}
scanf("%d",&m);
int l,r,z=0,t1,t2;
for(i=1;i<=m;i++){
scanf("%d%d",&l,&r);
l=(z+l)%n+1;
r=(z+r)%n+1;
if(l>r)swap(l,r);
z=question(T[r],l);
printf("%d\n",z);
} }
return 0;
}

hdu5790 Prefix(Trie树+主席树)的更多相关文章

  1. 线段树简单入门 (含普通线段树, zkw线段树, 主席树)

    线段树简单入门 递归版线段树 线段树的定义 线段树, 顾名思义, 就是每个节点表示一个区间. 线段树通常维护一些区间的值, 例如区间和. 比如, 上图 \([2, 5]\) 区间的和, 为以下区间的和 ...

  2. HDU5790 Prefix 字典树+主席树

    分析:这个题和spoj的d_query是一个题,那个是求一段区间里有多少个不同的数字,这里是统计有多少个不同的前缀 用字典树进行判重,(和查询不同的数字一样)对于每个不同的前缀,只保留它最后一次出现的 ...

  3. 【BZOJ3439】Kpm的MC密码 trie树+主席树

    Description 背景 想Kpm当年为了防止别人随便进入他的MC,给他的PC设了各种奇怪的密码和验证问题(不要问我他是怎么设的...),于是乎,他现在理所当然地忘记了密码,只能来解答那些神奇的身 ...

  4. HDU 5790 Prefix(Hash + 主席树)

    题目链接  Prefix 题意  给定一个字符串序列,求第$l$个字符串到第$r$个字符串之间有多少个不同的前缀 强制在线 考虑$Hash$ 首先把所有前缀都$hash$出来,按顺序组成一个长度不超过 ...

  5. 学习笔记--函数式线段树(主席树)(动态维护第K极值(树状数组套主席树))

    函数式线段树..资瓷 区间第K极值查询 似乎不过似乎划分树的效率更优于它,但是如果主席树套树状数组后,可以处理动态的第K极值.即资瓷插入删除,划分树则不同- 那么原理也比较易懂: 建造一棵线段树(权值 ...

  6. bzoj 3545&&3551: [ONTAK2010]Peaks &&加强版 平衡树&&并查集合并树&&主席树

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 635  Solved: 177[Submit][Stat ...

  7. BZOJ 4539: [Hnoi2016]树 [主席树 lca]

    4539: [Hnoi2016]树 题意:不想写.复制模板树的子树,查询两点间距离. *** 终于有一道会做的题了...... 画一画发现可以把每次复制的子树看成一个大点来建一棵树,两点的lca一定在 ...

  8. 线段树(单标记+离散化+扫描线+双标记)+zkw线段树+权值线段树+主席树及一些例题

    “队列进出图上的方向 线段树区间修改求出总量 可持久留下的迹象 我们 俯身欣赏” ----<膜你抄>     线段树很早就会写了,但一直没有总结,所以偶尔重写又会懵逼,所以还是要总结一下. ...

  9. UOJ#218. 【UNR #1】火车管理 线段树 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和 ...

随机推荐

  1. halcon案例学习之cbm_label_simple

    *cbm_label_simple 程序说明:*这个示例程序展示了如何使用基于组件的匹配来定位复合对象.在这种情况下,应该在图像中找到一个标签,用户既不知道其中的组件,也不知道它们之间的关系.因此,创 ...

  2. LeetCode430 扁平化多级双向链表

    您将获得一个双向链表,除了下一个和前一个指针之外,它还有一个子指针,可能指向单独的双向链表.这些子列表可能有一个或多个自己的子项,依此类推,生成多级数据结构,如下面的示例所示. 扁平化列表,使所有结点 ...

  3. Centos 6 下安装 OSSEC-2.8.1 邮件告警 (二)

    Ossec 配置邮件通知 ## 1 安装软件包: yum install -y sendmail mailx cyrus-sasl cyrus-sasl-plain #安装postfix邮件相关的软件 ...

  4. Fail2ban工具使用

    Fail2ban ​ fail2ban扫描日志文件并且可以识别禁用某些多次尝试登录的IP,通过更新系统的防火墙规则来实现拒绝该IP连接,也可以配置禁用的时间.fail2ban提供了一些常用软件默认的日 ...

  5. 使用Jenkins+Pipline 持构建自动化部署之安卓源码打包、测试、邮件通知

    一.引言 Jenkins 2.x的精髓是Pipeline as Code,那为什么要用Pipeline呢?jenkins1.0也能实现自动化构建,但Pipeline能够将以前project中的配置信息 ...

  6. Pytorch入门——手把手教你MNIST手写数字识别

    MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...

  7. RabbitMQ六种工作模式有哪些?怎样用SpringBoot整合RabbitMQ

    目录 一.RabbitMQ入门程序 二.Work queues 工作模式 三.Publish / Subscribe 发布/订阅模式 四.Routing 路由模式 五.Topics 六.Header ...

  8. 使用Canal作为mysql的数据同步工具

    一.Canal介绍 1.应用场景 在前面的统计分析功能中,我们采取了服务调用获取统计数据,这样耦合度高,效率相对较低,目前我采取另一种实现方式,通过实时同步数据库表的方式实现,例如我们要统计每天注册与 ...

  9. 2021年官网下载各个版本JDK最全版与官网查阅方法

    版本说明 1.安装部署JDK (1)环境 (2)官网下载JDK 由于官网的地址会随着时间的修改而更改修改下载地址,现在讲述下通用的界面操作下载JDK,以后JDK收费更严重,估计就只能下载开源的了. A ...

  10. 前端面试之JavaScript中this的指向【待完善!】

    JavaScript中this的指向问题! 另一个特殊的对象是 this,它在标准函数和箭头函数中有不同的行为. 在标准函数中, this 引用的是把函数当成方法调用的上下文对象,这时候通常称其为 t ...