[ZJOI2014]力


\[\begin{split}
E_j=&\sum_{i=1}^{j-1}\frac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\frac{q_i}{(i-j)^2}\\
=&\sum_{i=1}^{j}\frac{q_i}{(i-j)^2}-\sum_{i=j}^{n}\frac{q_i}{(i-j)^2}\\
\end{split}\\
\begin{cases}
f_i=q_i\\
g_i=\frac 1{i^2}\\
\end{cases}
\Rightarrow
ansa_i=\sum_{j+k=i}f_j\cdot g_k\\
\begin{cases}
f_i=q_{n-i+1}\\
g_i=\frac 1{i^2}\\
\end{cases}
\Rightarrow
ansb_i=\sum_{j+k=i}f_j\cdot g_k\\
ans_i=ansa_i-ansb_{n+1-i}\\
\]

#include <bits/stdc++.h>
using namespace std; //Start
#define lng long long
#define db double
#define mk make_pair
#define pb push_back
#define fi first
#define se second
#define rz resize
const int inf=0x3f3f3f3f;
const lng INF=0x3f3f3f3f3f3f3f3f; //Data
const int N=4e5;
int n; //FFT
const db Pi=acos(-1);
typedef pair<db,db> cp;
cp operator+(const cp a,const cp b){return mk(a.fi+b.fi,a.se+b.se);}
cp operator-(const cp a,const cp b){return mk(a.fi-b.fi,a.se-b.se);}
cp operator*(const cp a,const cp b){return mk(a.fi*b.fi-a.se*b.se,a.fi*b.se+a.se*b.fi);}
vector<cp> a(N+7),b(N+7),c(N+7);
int lim=1,ln,r[N+7];
void FFT(vector<cp>&f,int t){
for(int i=0;i<lim;i++)if(i<r[i]) swap(f[i],f[r[i]]);
for(int mid=1;mid<lim;mid<<=1){
cp wn(mk(cos(Pi/mid),sin(Pi/mid)*t));
for(int j=0;j<lim;j+=mid<<1){
cp w(mk(1,0));
for(int k=j;k<mid+j;w=w*wn,k++){
cp x(f[k]),y(w*f[mid+k]);
f[k]=x+y,f[mid+k]=x-y;
}
}
}
} //Main
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lf",&a[i].fi);
b[n+1-i].fi=a[i].fi;
c[i].fi=1.0/db(i)/db(i);
}
while(lim<=(n<<1)) lim<<=1,ln++;
for(int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(ln-1));
FFT(a,1),FFT(b,1),FFT(c,1);
for(int i=0;i<lim;i++) a[i]=a[i]*c[i],b[i]=b[i]*c[i];
FFT(a,-1),FFT(b,-1);
for(int i=0;i<lim;i++) a[i].fi/=lim,b[i].fi/=lim;
for(int i=1;i<=n;i++) printf("%.7lf\n",a[i].fi-b[n+1-i].fi);
return 0;
}

笔记-[ZJOI2014]力的更多相关文章

  1. [ZJOI3527][Zjoi2014]力

    [ZJOI3527][Zjoi2014]力 试题描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi.试求Ei. 输入 包含一个整数n,接下来n行每行输入一个数,第i行表示qi. 输出 有n ...

  2. bzoj3527: [Zjoi2014]力 fft

    bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  3. 洛谷 P3338 [ZJOI2014]力 解题报告

    P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...

  4. 【BZOJ 3527】 3527: [Zjoi2014]力 (FFT)

    3527: [Zjoi2014]力 Time Limit: 30 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2003  Solved: 11 ...

  5. [洛谷P3338] [ZJOI2014]力

    洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...

  6. P3338 [ZJOI2014]力(FFT)

    题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...

  7. [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)

    题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...

  8. V-rep学习笔记:力传感器

    VREP中可以添加力传感器,用于刚性连接在两个物体之间以测量这两个物体之间的作用力或力矩.如下图所示,力传感器可以测量沿着X.Y.Z三个坐标轴的力和力矩: [Forces and torques me ...

  9. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

随机推荐

  1. mysql之冷备和mysqldump、mydumper、xtrabackup备份

    1.冷备流程: 停库备份,冷备份一般用于非核心业务,这类业务一般都允许停库. 在停止数据库后,将数据文件拷贝出来,然后对原始数据文件进行备份. 流程: 1.关闭数据库备份          2.拷贝数 ...

  2. Java编码和字符集(详解)

    [1]什么是编码? [2]通过生活案例: [3]由权威机构形成的编码表才可以称之为:字符集 ASCII 英文字符集 用一个字节的7位表示 IOS8859-1 西欧字符集 用一个字节的8位表示 GB23 ...

  3. JavaScript高级程序设计(第四版) -- 随笔 -- 数组(未完)

    数组方法 .every() 与 .some() 传给两个个方法的函数都接收3个参数:数组元素.元素索引和数组本身. .every() -- 对于每一项都需要返回true,它才会返回true 若中途有一 ...

  4. mysql之用户

    1.通过Navicat For Mysql可以查看目前的用户情况 2.创建用户 create user 'Fqq'@'127.0.0.1' IDENTIFIED by '123'; -- 创建一个用户 ...

  5. 为什么Redis是单线程?

    转载链接:https://cloud.tencent.com/developer/article/1120615 1)以前一直有个误区,以为:高性能服务器 一定是多线程来实现的 原因很简单因为误区二导 ...

  6. [原题复现][2020i春秋抗疫赛] WEB blanklist(SQL堆叠注入、handler绕过)

    简介 今天参加i春秋新春抗疫赛 一道web没整出来 啊啊啊 好垃圾啊啊啊啊啊啊啊  晚上看群里赵师傅的buuoj平台太屌了分分钟上线 然后赵师傅还分享了思路用handler语句绕过select过滤.. ...

  7. CorelDRAW常用工具之渐变工具

    我们在进行宣传单页或者LOGO等等各种平面设计时,颜色的使用是极为重要的一方面.有些新手可能还不知道怎么填充多种颜色的渐变,有的背景色不止2个颜色渐变,而是由多种颜色调成的. 我们在画布上画两个图形, ...

  8. ABBYY FineReader如何将图片转换为Excel

    ABBYY FineReader的OCR文字识别功能很强大,不但可以将文件转换为文本文档或Word文档,也可以识别PDF文件或者图片上的表格,并且转换为Excel文件.下面我就为大家演示一下怎么用AB ...

  9. FL Studio中的Fruity slicer采样器功能介绍

    本章节采用图文结合的方式来给大家介绍电音编曲软件FL Studio中的Fruity Slicer采样器的功能,感兴趣的朋友可一起来交流哦. Fruity slicer(水果切片器)插件是FL Stud ...

  10. Edison:FL Studio中的常用音频录制与剪辑插件

    Edison是FL Studio中的一个完全集成的音频编辑和录制工具.Edison加载到效果插槽(在任何调音台音轨中),然后录制或播放该位置的音频.您可以在任意数量的混音器轨道或效果插槽中根据需要加载 ...