There is a set of matrixes that are constructed subject to the following constraints:

1. The matrix is a S(n)×S(n) matrix;

2. S(n) is the sum of the first n Fibonacci numbers modulus m, that is S(n) = (F1 + F2 + … + Fn) % m;

3. The matrix contains only three kinds of integers ‘0’, ‘1’ or ‘-1’;

4. The sum of each row and each column in the matrix are all different.

Here, the Fibonacci numbers are the numbers in the following sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

By definition, the first two Fibonacci numbers are 1 and 1, and each remaining number is the sum of the previous two.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation Fn = Fn-1 + Fn-2, with seed values F1 = F2 = 1.

Given two integers n and m, your task is to construct the matrix.

Input

The first line of the input contains an integer T (T <= 25), indicating the number of cases. Each case begins with a line containing two integers n and m (2 <= n <= 1,000,000,000, 2 <= m <= 200).

Output

For each test case, print a line containing the test case number (beginning with 1) and whether we could construct the matrix. If we could construct the matrix, please output “Yes”, otherwise output “No” instead. If there are multiple solutions, any one is accepted and then output the S(n)×S(n) matrix, separate each integer with an blank space (as the format in sample).

Sample Input

2
2 3
5 2

Sample Output

Case 1: Yes
-1 1
0 1
Case 2: No 难点在于构造:
构造方式 下三角为-1,上三角为 1,主对角-1 0 排列 ,主要是奇数和0的也不存在
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<cmath>
const int maxn=1e5+;
typedef long long ll;
using namespace std;
struct Mat
{
ll a[][];
}; int mod;
Mat Mul(Mat a,Mat b)
{
Mat ans;
memset(ans.a,,sizeof(ans.a));
for(int t=;t<;t++)
{
for(int j=;j<;j++)
{
for(int k=;k<;k++)
{
ans.a[t][j]=(ans.a[t][j]+a.a[t][k]*b.a[k][j])%mod;
}
}
}
return ans;
}
Mat ans;
ll quickpow(int n)
{
Mat res;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=;
res.a[][]=; while(n)
{
if(n&)
{
ans=Mul(res,ans);
}
res=Mul(res,res);
n>>=;
}
return ans.a[][];
}
int main()
{
int T;
cin>>T;
int n;
int cnt=;
while(T--)
{
scanf("%d%d",&n,&mod);
memset(ans.a,,sizeof(ans.a));
ans.a[][]=;
ans.a[][]=;
ans.a[][]=;
ll aa=quickpow(n-)%mod;
if(aa&||aa==)
{
printf("Case %d: No\n",cnt++);
}
else
{
printf("Case %d: Yes\n",cnt++);
for(int t=;t<aa;t++)
{
for(int j=;j<aa;j++)
{
if(t>j)
{
printf("-1 ");
}
if(t<j)
{
printf("1 ");
}
if(t==j&&t%==)
{
printf("-1 ");
}
if(t==j&&t%==)
{
printf("0 ");
}
}
printf("\n");
}
} }
return ;
}

Construct a Matrix (矩阵快速幂+构造)的更多相关文章

  1. fzu 1911 Construct a Matrix(矩阵快速幂+规律)

    题目链接:fzu 1911 Construct a Matrix 题目大意:给出n和m,f[i]为斐波那契数列,s[i]为斐波那契数列前i项的和.r = s[n] % m.构造一个r * r的矩阵,只 ...

  2. 233 Matrix 矩阵快速幂

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  3. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  4. UVa 11149 Power of Matrix (矩阵快速幂,倍增法或构造矩阵)

    题意:求A + A^2 + A^3 + ... + A^m. 析:主要是两种方式,第一种是倍增法,把A + A^2 + A^3 + ... + A^m,拆成两部分,一部分是(E + A^(m/2))( ...

  5. HDU 5015 233 Matrix --矩阵快速幂

    题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...

  6. 233 Matrix(矩阵快速幂+思维)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  7. HDU5015 233 Matrix —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-5015 233 Matrix Time Limit: 10000/5000 MS (Java/Others)    Memor ...

  8. UVa 11149 Power of Matrix 矩阵快速幂

    题意: 给出一个\(n \times n\)的矩阵\(A\),求\(A+A^2+A^3+ \cdots + A^k\). 分析: 这题是有\(k=0\)的情况,我们一开始先特判一下,直接输出单位矩阵\ ...

  9. hdu6470 矩阵快速幂+构造矩阵

    http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意 \(f[n]=2f[n-2]+f[n-1]+n^3,n \leq 10^{18}\),求f[n] 题 ...

随机推荐

  1. 学学Viewbinding

    Viewbinding 1.环境需求 环境上,需要Android Studio 3.6 Canary 11+ 同样的Gradle也需要升级(这年头都4.0了,应该没有还在用低版本的了吧...) 2.配 ...

  2. C# Thread.Name 的作用和意义

    Thread.Name属性 C#的线程提供Thread.Name属性.这意味着每个线程可以设定一个Name属性来标志它们. Name属性的使用时特性 线程的Name属性默认情况下是null.该值只能被 ...

  3. ElasticSearch 7.8.1 从入门到精通

    学前导读 ElasticSearch对电脑配置要求较高,内存至少4G以上,空闲2G内存,线程数4018+ 学习的时候,推荐将ElasticSearch安装到Linux或者mac上,极度不推荐装Wind ...

  4. 2020-07-22:你觉得使用redis的主从复制的时候有什么点需要注意的吗?

    福哥答案2020-07-22: 1.主从同步缓冲区设定大小,如果进行全量复制耗时太长,进行部分复制时发现数据已经存在丢失的情况,必须进行第二次全量复制,致使slave陷入死循环状态.在全量复制的时候, ...

  5. C#图解教程(第四版)—01—类型,存储,变量

    3.1 如何广泛的描述C#程序 可以说C程序是一组函数和数据类型,C++程序是一组函数和类,然而C#程序是一组类型声明 3.2 类型 可以把类型想象成一个用来创建数据结构的模板,模板本身并不是数据结构 ...

  6. myBatis源码解析-反射篇(4)

    前沿 前文分析了mybatis的日志包,缓存包,数据源包.源码实在有点难顶,在分析反射包时,花费了较多时间.废话不多说,开始源码之路. 反射包feflection在mybatis路径如下: 源码解析 ...

  7. 复习 Array,重学 JavaScript

    1 数组与对象 在 JavaScript 中,一个对象的键只能有两种类型:string 和 symbol.下文只考虑键为字符串的情况. 1.1 创建对象 在创建对象时,若对象的键为数字,或者由 字母+ ...

  8. Vue3 + Element ui 后台管理系统

    Vue3 + Element ui  后台管理系统 概述:这是一个用vue3.0和element搭建的后台管理系统界面. 项目git地址: https://github.com/whiskyma/vu ...

  9. 【Flutter 实战】一文学会20多个动画组件

    老孟导读:此篇文章是 Flutter 动画系列文章第三篇,后续还有动画序列.过度动画.转场动画.自定义动画等. Flutter 系统提供了20多个动画组件,只要你把前面[动画核心](文末有链接)的文章 ...

  10. 笔记:安装VM Tools、vim编辑器、压缩包、Linux用户管理

    一.VM Tools安装 1.作用:方便我们在虚拟机和宿主机之间复制数据或移动文件等. 2.安装步骤: step1:在菜单栏找到虚拟机---->找到安装vm tools ,点击: step2:进 ...