Gym102012A Rikka with Minimum Spanning Trees
题意
\(T\) 组数据,每组数据给定一个 \(n\) 个点,\(m\) 条边,可能含有重边自环的图,求出最小生成树的个数与边权和的乘积,对 \(10^9+7\) 取模。
\(\texttt{Data Range:}T\leq 100,2\leq n\leq 10^5,m=10^5\)
题解
大家好,这题充分展现了我就是个 sb。
一见数据随机,立刻想到相同边权的边很少,立刻想到矩阵大小很小,立刻想到最小生成树计数,立刻想到 Matrix-Tree 定理。某些 Karry5307 的想像惟在这一层能够如此跃进。
直接进入正题,首先不能被题目中给出的最小生成树计数方法给带偏。
注意到边权在 \(0\sim 2^{64}-1\) 范围内随机给定,所以我们有很大的把握认定最小生成树唯一,求出这个生成树的边权和即可。
代码
#include<bits/stdc++.h>
using namespace std;
typedef int ll;
typedef long long int li;
typedef unsigned long long int ull;
const ll MAXN=2e5+51,MOD=1e9+7;
struct EdgeForKruskal{
ll from,to;
ull dist;
inline bool operator <(const EdgeForKruskal &rhs)const
{
return this->dist<rhs.dist;
}
};
EdgeForKruskal ed[MAXN];
ll test,n,m,x,y;
ull z;
ll ffa[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
inline ll find(ll x)
{
return x==ffa[x]?x:ffa[x]=find(ffa[x]);
}
inline void merge(ll x,ll y)
{
ll fx=find(x),fy=find(y);
fx!=fy?ffa[fy]=fx:1;
}
inline ll Kruskal()
{
ll tott=0,res=0;
for(register int i=1;i<=m;i++)
{
if(find(ed[i].from)!=find(ed[i].to))
{
merge(ed[i].from,ed[i].to),res=(res+ed[i].dist%MOD)%MOD;
if(++tott==n-1)
{
break;
}
}
}
return tott==n-1?res:0;
}
namespace Maker{
ull k1,k2;
inline ull gen()
{
ull k3=k1,k4=k2;
k1=k4,k3^=k3<<23,k2=k3^k4^(k3>>17)^(k4>>26);
return k2+k4;
}
}
using namespace Maker;
inline void solve()
{
n=read(),m=read(),scanf("%llu%llu",&k1,&k2);
for(register int i=1;i<=n;i++)
{
ffa[i]=i;
}
for(register int i=1;i<=m;i++)
{
x=gen()%n+1,y=gen()%n+1,z=gen(),ed[i]=(EdgeForKruskal){x,y,z};
}
sort(ed+1,ed+m+1),printf("%d\n",Kruskal());
}
int main()
{
test=read();
for(register int i=0;i<test;i++)
{
solve();
}
}
Gym102012A Rikka with Minimum Spanning Trees的更多相关文章
- 【2018 ICPC亚洲区域赛徐州站 A】Rikka with Minimum Spanning Trees(求最小生成树个数与总权值的乘积)
Hello everyone! I am your old friend Rikka. Welcome to Xuzhou. This is the first problem, which is a ...
- Minimum Spanning Trees
Kruskal’s algorithm always union the lightest link if two sets haven't been linked typedef struct { ...
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- hdu 4408 Minimum Spanning Tree
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
- [LeetCode] Minimum Height Trees 最小高度树
For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- Minimum Height Trees
For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...
随机推荐
- 【FastDFS】小伙伴们说在CentOS 8服务器上搭建FastDFS环境总报错?
写在前面 在[冰河技术]微信公众号的[分布式存储]专题中,我们分别搭建了单节点FastDFS环境和高可用FastDFS集群环境.但是,之前的环境都是基于CentOS 6.8服务器进行搭建的.很多小伙伴 ...
- Tomcat 中 catalina.out、catalina.log、localhost.log 和 access_log 的区别
打开 Tomcat 安装目录中的 log 文件夹,我们可以看到很多日志文件,这篇文章就来介绍下这些日记文件的具体区别. catalina.out 日志 catalina.out 日志文件是 Tomca ...
- SpringBoot一统江湖
一 SpringBoot简介 SpringBoot是Spring框架的一个新子项目 用于创建Spring4.0项目 它的开发始于2013年 2014年4月发布1.0.0版本 它可以自动配置Spring ...
- Hibernate4.3 QBC查询
一.基本查询 1 Session session = HibernateUtils.getSession(); 2 //创建QBC查询接口的实现类 3 Criteria criteria = sess ...
- Centos-rpm二进制包安装-rpm
rpm 软件包管理器 rpm包命名规范 mysql-community-server-5.7.21-1.el7.x86_64.rpm 软件名称 mysql-community-server 软件版本 ...
- Leetcode-二分
69. x的平方根 https://leetcode-cn.com/problems/sqrtx/ 实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于 ...
- Python练习题 015:一颗自由落地的球
[Python练习题 015] 一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下.求它在第10次落地时,共经过多少米?第10次反弹多高? ----------------------- ...
- 058 01 Android 零基础入门 01 Java基础语法 06 Java一维数组 05 案例:求数组元素的最大值
058 01 Android 零基础入门 01 Java基础语法 06 Java一维数组 05 案例:求数组元素的最大值 本文知识点:求数组元素的最大值 案例:求数组元素的最大值 程序代码及其执行过程 ...
- 晶振(crystal)与谐振荡器(oscillator)
参考: 1. https://wenku.baidu.com/view/e609af62f5335a8102d2202f.html 2. 晶体振荡器也分为无源晶振和有源晶振两种类型.无源晶振与有源晶振 ...
- 【题解】小Z的袜子
期末考试结束了,来写写blog吧 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具 ...