最小生成树 kruskal算法 codevs 1638 修复公路
A地区在地震过后,连接所有村庄的公路都造成了损坏而无法通车。政府派人修复这些公路。
给出A地区的村庄数N,和公路数M,公路是双向的。并告诉你每条公路的连着哪两个村庄,并告诉你什么时候能修完这条公路。问最早什么时候任意两个村庄能够通车,即最早什么时候任意两条村庄都存在至少一条修复完成的道路(可以由多条公路连成一条道路)
第1行两个正整数N,M(N<=1000,M<=100000)
下面M行,每行3个正整数x, y, t,告诉你这条公路连着x,y两个村庄,在时间t时能修复完成这条公路。(x<=N,y<=N,t<=100000)
如果全部公路修复完毕仍然存在两个村庄无法通车,则输出-1,否则输出最早什么时候任意两个村庄能够通车。
4 4
1 2 6
1 3 4
1 4 5
4 2 3
5
/*
题目的意思很容易就得出:这个题是求一张图的最小生成树的最大边的。
写程序的时候,没注意把father[x1]=y1;写成了father[x1]==y1;结果只有20分啊!
*/
#define N 1005
#define M 100010
#include<iostream>
using namespace std;
#include<cstdio>
#include<algorithm>
int n,m;
struct Edge{
int u,v,w;
bool operator <(Edge P)
const{return w<P.w;}
}edge[M];
int father[N];
void input()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
sort(edge+,edge+m+);
}
int find1(int x)
{
return (father[x]==x)?x:father[x]=find1(father[x]);
}
int kruskal()
{
for(int i=;i<=n;++i)
father[i]=i;
int sum=;
for(int i=;i<=m;++i)
{
int x1=find1(edge[i].u);
int y1=find1(edge[i].v);
if(x1!=y1)
{
sum++;
father[x1]=y1;
if(sum==n-)
return edge[i].w;
}
}
return -;
}
int main()
{
input();
printf("%d\n",kruskal());
return ;
}
最小生成树 kruskal算法 codevs 1638 修复公路的更多相关文章
- CODEVS 1638 修复公路
题目描述 Description A地区在地震过后,连接所有村庄的公路都造成了损坏而无法通车.政府派人修复这些公路. 给出A地区的村庄数N,和公路数M,公路是双向的.并告诉你每条公路的连着哪两个村庄, ...
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 最小生成树Kruskal算法
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...
- 最小生成树------Kruskal算法
Kruskal最小生成树算法的概略描述:1 T=Φ:2 while(T的边少于n-1条) {3 从E中选取一条最小成本的边(v,w):4 从E中删去(v,w):5 if((v,w)在T中不生成环) { ...
- 求最小生成树——Kruskal算法
给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这篇文章先介绍Kruskal算法. Kruskal算法的基本思想:先将所有边按权值从小到大排序,然后按顺 ...
- 最小生成树 kruskal算法&prim算法
(先更新到这,后面有时间再补,嘤嘤嘤) 今天给大家简单的讲一下最小生成树的问题吧!(ps:本人目前还比较菜,所以最小生成树最后的结果只能输出最小的权值,不能打印最小生成树的路径) 本Tianc在刚学的 ...
- 算法实践--最小生成树(Kruskal算法)
什么是最小生成树(Minimum Spanning Tree) 每两个端点之间的边都有一个权重值,最小生成树是这些边的一个子集.这些边可以将所有端点连到一起,且总的权重最小 下图所示的例子,最小生成树 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
随机推荐
- C#中IList与List
C#中IList<T>与List<T>的区别感想 写代码时对: IList IList11 =new List (); List List11 =new List (); 有所 ...
- Cats(2)- Free语法组合,Coproduct-ADT composition
上篇我们介绍了Free类型可以作为一种嵌入式编程语言DSL在函数式编程中对某种特定功能需求进行描述.一个完整的应用可能会涉及多样的关联功能,但如果我们为每个应用都设计一套DSL的话,那么在我们的函数式 ...
- Eclipse中的checkstyle插件
一.Checkstyle工具 Checkstyle是一款检查Java程序源代码样式的工具,它可以有效的帮助我们检视代码以便更好的遵循代码编写标准. 官方地址:http://checkstyle.sou ...
- C#中JSON序列化和反序列化
有一段时间没有到博客园写技术博客了,不过每天逛逛博客园中大牛的博客还是有的,学无止境…… 最近在写些调用他人接口的程序,用到了大量的JSON.XML序列化和反序列化,今天就来总结下json的序列化和反 ...
- 中文字体font-family常用列表
Windows的一些: 黑体:SimHei 宋体:SimSun 新宋体:NSimSun 仿宋:FangSong 楷体:KaiTi 仿宋_GB2312:FangSong_GB2312 楷体_GB2312 ...
- EasyUI弹出窗口实例
效果体验:http://hovertree.com/texiao/jeasyui/1.htm 源代码下载:HovertreeJEasyUI HTML文件代码: <!DOCTYPE html> ...
- CSS3——3D旋转图(跑马灯效果图)
CSS3新增了很多新的属性,可以用很少的代码实现炫酷的动画效果,但由于兼容性各浏览器的能力存在不足,有特别需求的网站就呵呵啦.H5C3已是大势所趋了,之前看过一个新闻,Chrome将在年底全面转向H5 ...
- AMD and CMD are dead之JS工程化终极解决方案KMD.js版本0.0.1发布
回顾 经过两天晚上疯狂的开发调试,伴随着大量掉落的头发和酸痛的颈椎,KMD.js赢来了第一个稳定版本.在此期间KMD规范也有所修改和完善. 这两天主要完成的功能有: 按需加载 版本控制 模块管理 便捷 ...
- Day Tips:关于搜索小问题
1.如果想重启SPSearchHostController请确保没有服务在运行,如果有爬网运行可能会导致重启失败,使之处于stoping状态,不过遇到这个状态也不要紧使用 taskkill /f /f ...
- Android细笔记--ContentProvider
Provider的不常见访问方式 Batch access:访问ContentProvider的一中模式,使用该模式可以同时对provider进行多个操作,且支持同时操作多个表.使用时首先构建一个Co ...