3. Distributional Reinforcement Learning with Quantile Regression
C51算法理论上用Wasserstein度量衡量两个累积分布函数间的距离证明了价值分布的可行性,但在实际算法中用KL散度对离散支持的概率进行拟合,不能作用于累积分布函数,不能保证Bellman更新收敛;且C51算法使用价值分布的若干个固定离散支持,通过调整它们的概率来构建价值分布。
而分位数回归(quantile regression)的distributional RL对此进行了改进。首先,使用了C51的“转置”,即固定若干个离散支持的均匀概率,调整离散支持的位置;引入分位数回归的思想,近似地实现了Wasserstein距离作为损失函数。
Quantile Distribution
假设\(\mathcal{Z}_Q\)是分位数分布空间,可以将它的累积概率函数均匀分为\(N\)等分,即\(\tau_0,\tau_1...,\tau_N(\tau_i=\frac{i}{N},i=0,1,..,N)\)。使用模型\(\theta:\mathcal{S}\times \mathcal{A}\to \mathbb{R}^N\)来预测分位数分布\(Z_\theta \in \mathcal{Z}_Q\),即模型\(\{\theta_i (s,a)\}\)将状态-动作对\((s,a)\)映射到均匀概率分布上。\(Z_\theta (s,a)\)的定义如下
\]
其中,\(\delta_z\)表示在\(z\in\mathbb{R}\)处的Dirac函数
与C51算法相比,这种做法的好处:
- 不再受预设定的支持限制,当回报的变化范围很大时,预测更精确
- 取消了C51的投影步骤,避免了一些先验知识
- 使用分位数回归,可以近似最小化Wassertein损失,梯度下降不再有偏
Quantile Approximation
Quantile Projection
使用1-Wassertein距离对随机价值分布\(Z\in \mathcal{Z}\)到\(\mathcal{Z}_Q\)的投影进行量化:
\]
假设\(Z_\theta\)的支持集为\(\{\theta_1,...,\theta_N \}\),那么
\]
其中,\(\tau_i,\tau_{i-1}\in[0,1]\)论文指出,当\(F_Z^{-1}\)是逆累积分布函数时,\(F_Z^{-1}((\tau_{i-1}+\tau_i)/2)\)最小。因此,量化中点为\(\mathcal{\hat\tau_i}=\frac{\tau_{i-1}+\tau_i}{2}(1\le i\le N)\),且最小化\(W_1\)的支持\(\theta_i=F_Z^{-1}(\mathcal{\hat\tau_i})\)。如下图
【注】C51是将回报空间(横轴)均分为若干个支持,然后求Bellman算子更新后回报落在每个支持上的概率,而分位数投影是将累积概率(纵轴)分为若干个支持(图中是4个支持),然后求出对应每个支持的回报值;图中阴影部分的面积和就是1-Wasserstein误差。
Quantile Regression
建立分位数投影后,需要去近似分布的分位数函数,需要引入分位数回归损失。对于分布\(Z\)和一个给定的分位数\(\tau\),分位数函数\(F_Z^{-1}(\tau)\)的值可以通过最小化分位数回归损失得到
\]
最终,整体的损失函数为
\]
但是,分位数回归损失在0处不平滑。论文进一步提出了quantile Huber loss:
\begin{cases}
& \frac{1}{2}u^2,\quad\quad\quad\quad \text{if} |u|\le \mathcal{K} \\
& \mathcal{K}(|u|-\frac{1}{2}\mathcal{K}),\,\, \text{otherwise}
\end{cases}
\]
\]
Implement
QR TD-Learning
QRTD算法(quantile regression temporal difference learning algorithm)的更新
\]
\(a\sim\pi (\cdot|s),r\sim R(s,a),s^\prime\sim P(\cdot|s,a),z^\prime\sim Z_\theta(s^\prime)\)
其中,\(Z_\theta\)是由公式(1)给出的分位数分布,\(\theta_i (s)\)是状态\(s\)下\(F_{Z^\pi (s)}^{-1}(\mathcal{\hat \tau}_i)\)的估计值。
QR-DQN
QR-DQN算法伪代码
Append
1. Dirac Delta Function
\]
References
Will Dabney, Mark Rowland, Marc G. Bellemare, Rémi Munos. Distributional Reinforcement Learning with Quantile Regression. 2017.
Distributional RL
3. Distributional Reinforcement Learning with Quantile Regression的更多相关文章
- Distributional Reinforcement Learning with Quantile Regression
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.10044v1 [cs.AI] 27 Oct 2017 In AAAI Conference on Artifici ...
- Statistics and Samples in Distributional Reinforcement Learning
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1902.08102v1 [stat.ML] 21 Feb 2019 Abstract 我们通过递归估计回报分布的统计量,提供 ...
- 2. A Distributional Perspective on Reinforcement Learning
本文主要研究了分布式强化学习,利用价值分布(value distribution)的思想,求出回报\(Z\)的概率分布,从而取代期望值(即\(Q\)值). Q-Learning Q-Learning的 ...
- [转]Introduction to Learning to Trade with Reinforcement Learning
Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...
- Introduction to Learning to Trade with Reinforcement Learning
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...
- Rainbow: Combining Improvements in Deep Reinforcement Learning
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.02298v1 [cs.AI] 6 Oct 2017 (AAAI 2018) Abstract 深度强化学习社区对D ...
- Machine Learning Algorithms Study Notes(5)—Reinforcement Learning
Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...
- (转) Playing FPS games with deep reinforcement learning
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
随机推荐
- k8s滚动更新(六)
实践 滚动更新是一次只更新一小部分副本,成功后,再更新更多的副本,最终完成所有副本的更新.滚动更新的最大的好处是零停机,整个更新过程始终有副本在运行,从而保证了业务的连续性. 下面我们部署三副本应用, ...
- 云计算openstack——云计算、大数据、人工智能(16)
一.互联网行业及云计算 在互联网时代,技术是推动社会发展的驱动,云计算则是一个包罗万象的技术栈集合,通过网络提供IAAS.PAAS.SAAS等资源,涵盖从数据中心底层的硬件设置到最上层客户的应用.给我 ...
- 设计模式之Command
由于学习hystrix的使用和原理 所以就学习了command模式https://www.jdon.com/designpatterns/command.htm Command模式是最让我疑惑的一 ...
- rabbitmq的安装&学习
主要按照 https://www.cnblogs.com/web424/p/6761153.html https://www.cnblogs.com/qiyebao/p/4822583.html 学习 ...
- Boolean.valueOf(String)
Boolean.valueOf(String) a. 当 String 的参数值在不区分大小写的时候等于 "true" ,则 Boolean.valueOf(String) 返回值 ...
- ERP与EHR系统的恩怨纠葛--开源软件诞生13
ERP中需要EHR的存在吗--第13篇 用日志记录"开源软件"的诞生 [点亮星标]----祈盼着一个鼓励 博主开源地址: 码云:https://gitee.com/redragon ...
- CCNP七层参考模型
一.OSI七层参考模型 七层参考模型由ISO组织提出,为什么是参考模型呢?因为我们现在实际应用的是TCP/IP协议栈,OSI模型仅供学习参考,下面具体说一下有哪七层: (7)应用层:应用程序和服务功能 ...
- 吴恩达Machine Learning学习笔记(三)--逻辑回归+正则化
分类任务 原始方法:通过将线性回归的输出映射到0-1,设定阈值来实现分类任务 改进方法:原始方法的效果在实际应用中表现不好,因为分类任务通常不是线性函数,因此提出了逻辑回归 逻辑回归 假设表示--引入 ...
- SVN合并分支提示不是祖先关系
开发:dev 测试:test 开发完成后,需要合并到test然后部署,进入测试. F:主干 合并到那里,那里就是主干(要合并到的分支)[起始] T:分支 从那里合并那里就是分支[结束] 备注:需要精确 ...
- Centos-显示文件类型-file
file 长度为0的文件则显示为空位文件,对于软链接文件则显示链接的真实文件路径,默认输出会有文件名 相关选项 -b 只显示文件类型结果 -L 显示软链接指向文件的类型 -z 显示压缩文件信息 -i ...