3. Distributional Reinforcement Learning with Quantile Regression
C51算法理论上用Wasserstein度量衡量两个累积分布函数间的距离证明了价值分布的可行性,但在实际算法中用KL散度对离散支持的概率进行拟合,不能作用于累积分布函数,不能保证Bellman更新收敛;且C51算法使用价值分布的若干个固定离散支持,通过调整它们的概率来构建价值分布。
而分位数回归(quantile regression)的distributional RL对此进行了改进。首先,使用了C51的“转置”,即固定若干个离散支持的均匀概率,调整离散支持的位置;引入分位数回归的思想,近似地实现了Wasserstein距离作为损失函数。
Quantile Distribution
假设\(\mathcal{Z}_Q\)是分位数分布空间,可以将它的累积概率函数均匀分为\(N\)等分,即\(\tau_0,\tau_1...,\tau_N(\tau_i=\frac{i}{N},i=0,1,..,N)\)。使用模型\(\theta:\mathcal{S}\times \mathcal{A}\to \mathbb{R}^N\)来预测分位数分布\(Z_\theta \in \mathcal{Z}_Q\),即模型\(\{\theta_i (s,a)\}\)将状态-动作对\((s,a)\)映射到均匀概率分布上。\(Z_\theta (s,a)\)的定义如下
\]
其中,\(\delta_z\)表示在\(z\in\mathbb{R}\)处的Dirac函数
与C51算法相比,这种做法的好处:
- 不再受预设定的支持限制,当回报的变化范围很大时,预测更精确
- 取消了C51的投影步骤,避免了一些先验知识
- 使用分位数回归,可以近似最小化Wassertein损失,梯度下降不再有偏
Quantile Approximation
Quantile Projection
使用1-Wassertein距离对随机价值分布\(Z\in \mathcal{Z}\)到\(\mathcal{Z}_Q\)的投影进行量化:
\]
假设\(Z_\theta\)的支持集为\(\{\theta_1,...,\theta_N \}\),那么
\]
其中,\(\tau_i,\tau_{i-1}\in[0,1]\)论文指出,当\(F_Z^{-1}\)是逆累积分布函数时,\(F_Z^{-1}((\tau_{i-1}+\tau_i)/2)\)最小。因此,量化中点为\(\mathcal{\hat\tau_i}=\frac{\tau_{i-1}+\tau_i}{2}(1\le i\le N)\),且最小化\(W_1\)的支持\(\theta_i=F_Z^{-1}(\mathcal{\hat\tau_i})\)。如下图

【注】C51是将回报空间(横轴)均分为若干个支持,然后求Bellman算子更新后回报落在每个支持上的概率,而分位数投影是将累积概率(纵轴)分为若干个支持(图中是4个支持),然后求出对应每个支持的回报值;图中阴影部分的面积和就是1-Wasserstein误差。
Quantile Regression
建立分位数投影后,需要去近似分布的分位数函数,需要引入分位数回归损失。对于分布\(Z\)和一个给定的分位数\(\tau\),分位数函数\(F_Z^{-1}(\tau)\)的值可以通过最小化分位数回归损失得到
\]
最终,整体的损失函数为
\]
但是,分位数回归损失在0处不平滑。论文进一步提出了quantile Huber loss:
\begin{cases}
& \frac{1}{2}u^2,\quad\quad\quad\quad \text{if} |u|\le \mathcal{K} \\
& \mathcal{K}(|u|-\frac{1}{2}\mathcal{K}),\,\, \text{otherwise}
\end{cases}
\]
\]
Implement
QR TD-Learning
QRTD算法(quantile regression temporal difference learning algorithm)的更新
\]
\(a\sim\pi (\cdot|s),r\sim R(s,a),s^\prime\sim P(\cdot|s,a),z^\prime\sim Z_\theta(s^\prime)\)
其中,\(Z_\theta\)是由公式(1)给出的分位数分布,\(\theta_i (s)\)是状态\(s\)下\(F_{Z^\pi (s)}^{-1}(\mathcal{\hat \tau}_i)\)的估计值。
QR-DQN
QR-DQN算法伪代码

Append
1. Dirac Delta Function
\]
References
Will Dabney, Mark Rowland, Marc G. Bellemare, Rémi Munos. Distributional Reinforcement Learning with Quantile Regression. 2017.
Distributional RL
3. Distributional Reinforcement Learning with Quantile Regression的更多相关文章
- Distributional Reinforcement Learning with Quantile Regression
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.10044v1 [cs.AI] 27 Oct 2017 In AAAI Conference on Artifici ...
- Statistics and Samples in Distributional Reinforcement Learning
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1902.08102v1 [stat.ML] 21 Feb 2019 Abstract 我们通过递归估计回报分布的统计量,提供 ...
- 2. A Distributional Perspective on Reinforcement Learning
本文主要研究了分布式强化学习,利用价值分布(value distribution)的思想,求出回报\(Z\)的概率分布,从而取代期望值(即\(Q\)值). Q-Learning Q-Learning的 ...
- [转]Introduction to Learning to Trade with Reinforcement Learning
Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...
- Introduction to Learning to Trade with Reinforcement Learning
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...
- Rainbow: Combining Improvements in Deep Reinforcement Learning
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.02298v1 [cs.AI] 6 Oct 2017 (AAAI 2018) Abstract 深度强化学习社区对D ...
- Machine Learning Algorithms Study Notes(5)—Reinforcement Learning
Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...
- (转) Playing FPS games with deep reinforcement learning
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
随机推荐
- (专题四)05 matlab视角处理
方位角 视角 子图一 子图二,视点设置在图形的正上方 子图三,视点设置在图形侧面时的效果 子图四,十点设置在图形斜下方的效果 \circ用于输出符号° view函数的其他用法 视点在笛卡尔坐标中的位置 ...
- MybatisPlus根据模板生成器代码
导读 网上的代码生成器,都不是自己想要的,今天下午研究了下,可以使用mybatisplus自定义模板,根据模板生成相应的代码,可以根据需求,改造相应模板即可.代码已上传github/百度云. 项目结构 ...
- 《Head First 设计模式》:状态模式
正文 一.定义 状态模式允许对象在内部状态改变时改变它的行为,对象看起来好像修改了它的类. 要点: 状态模式允许一个对象基于内部状态而拥有不同的行为. 状态模式将状态封装成为独立的类,并将动作委托到代 ...
- Flutter集成环信IM,发送图片之后渲染conversation.loadMoreMsgFromDB报path为空
这时会报错,结果如下: 只需在em_message_body下修改如图path为空即可
- Neo4j---性能优化
不会项目管理的研发不是好loder(^_^ ^_^),开个玩笑,目的是想说项目管理很重要,研发同胞们需要重视.重视.重视(重要的事情说三遍).随着项目业务扩展,不再是停留在基本某一业务范围,海量数据接 ...
- Redis小记(一)
1.redis的数据结构 (1)动态字符串(SDS) redis自身构建了一个简单动态字符串的抽象类型,SDS,在redis里,包含字符串的键值对在底层都是由SDS来实现的. 除了用来保存数据库的字符 ...
- ES 入门 - 基于词项的查询
准备 首先先声明下,我这里使用的 ES 版本 5.2.0. 为了便于理解,这里以如下 index 为格式,该格式是通过 PMACCT 抓取的 netflow 流量信息, 文中所涉及的到的例子,全基于此 ...
- 关于继承、封装、多态、抽象和接口(Java)
1.继承: 通过扩展一个已有的类,并继承该类的属性和行为,来创建一个新的类.已有的称为父类,新的类称为子类(父类派生子类,子类继承父类). (1)继承的优点:①代码的可重用性: ②父类的属性的方 ...
- matlab receive License Manager Error -103?
参考:https://www.mathworks.com/matlabcentral/answers/91874-why-do-i-receive-license-manager-error-103 ...
- matlab中fopen 打开文件或获得有关打开文件的信息
参考:https://ww2.mathworks.cn/help/matlab/ref/fopen.html?searchHighlight=fopen&s_tid=doc_srchtitle ...