1、安装R语言环境

su -c 'rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm'

su -c 'yum install foo'

yum list R-\*

yum install R

2、安装RStudio Desktop和Server

Desktop是rpm包,双击执行

Server安装命令:

yum install openssl098e # Required only for RedHat/CentOS 6 and 7

wget http://download2.rstudio.org/rstudio-server-0.98.1091-x86_64.rpm

yum install --nogpgcheck rstudio-server-0.98.1091-x86_64.rpm

添加r-user用户

3、安装gcc、git、pkg-config

yum install gcc git pkg-config

4、安装thrift0.9.0

yum install automake libtool flex bison pkgconfig gcc-c++ boost-devel libevent-devel zlib-devel python-devel ruby-devel

编译安装步骤:

Update the System

yum -y update

Install the Platform Development Tools

yum -y groupinstall "Development Tools"

Upgrade autoconf/automake/bison

yum install -y wget

Upgrade autoconf

wget http://ftp.gnu.org/gnu/autoconf/autoconf-2.69.tar.gz

tar xvf autoconf-2.69.tar.gz

cd autoconf-2.69

./configure --prefix=/usr

make

make install

Upgrade automake

wget http://ftp.gnu.org/gnu/automake/automake-1.14.tar.gz

tar xvf automake-1.14.tar.gz

cd automake-1.14

./configure --prefix=/usr

make

make install

Upgrade bison

wget http://ftp.gnu.org/gnu/bison/bison-2.5.1.tar.gz

tar xvf bison-2.5.1.tar.gz

cd bison-2.5.1

./configure --prefix=/usr

make

make install

Install C++ Lib Dependencies

yum -y install libevent-devel zlib-devel openssl-devel

Upgrade Boost

wget http://sourceforge.net/projects/boost/files/boost/1.55.0/boost_1_55_0.tar.gz

tar xvf boost_1_55_0.tar.gz

cd boost_1_55_0

./bootstrap.sh

./b2 install

Build and Install the Apache Thrift IDL Compiler

git clone https://git-wip-us.apache.org/repos/asf/thrift.git

cd thrift

./bootstrap.sh

./configure --with-lua=no

修改/thrift-0.9.1/lib/cpp/thrift.pc的includedir=${prefix}/include/thrift

make

make install

Update PKG_CONFIG_PATH:

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig/

Verifiy pkg-config path is correct:

pkg-config --cflags thrift

returns:

-I /usr/local/include/thrift

拷贝文件到lib文件夹

cp /usr/local/lib/libthrift-1.0.0-dev.so /usr/lib/

5、设置Linux环境变量

export HADOOP_PREFIX=/usr/lib/hadoop

export HADOOP_CMD=/usr/lib/hadoop/bin/hadoop

export HADOOP_STREAMING=/usr/lib/hadoop-mapreduce/hadoop-streaming.jar

6、root用户下开启R环境安装依赖包

install.packages(c("rJava", "Rcpp", "RJSONIO", "bitops", "digest",

"functional", "stringr", "plyr", "reshape2", "dplyr",

"R.methodsS3", "caTools", "Hmisc", "data.table", "memoise"))

7、root用户下开启R环境安装RHadoop包

install.packages("/root/RHadoop/rhdfs_1.0.8.tar.gz", repos=NULL, type="source")

install.packages("/root/RHadoop/rmr2_3.3.0.tar.gz", repos=NULL, type="source")

install.packages("/root/RHadoop/plyrmr_0.5.0.tar.gz", repos=NULL, type="source")

install.packages("/root/RHadoop/rhbase_1.2.1.tar.gz", repos=NULL, type="source")

8、配置ant 和 maven

export MAVEN_HOME=/root/apache-maven-3.2.5

export PATH=/root/apache-maven-3.2.5/bin:$PATH

export ANT_HOME=/root/apache-ant-1.9.4

export PATH=$ANT_HOME/bin:$PATH

9、测试RHadoop

Sys.setenv("HADOOP_PREFIX"="/usr/lib/hadoop")

Sys.setenv("HADOOP_CMD"="/usr/lib/hadoop/bin/hadoop")

Sys.setenv("HADOOP_STREAMING"="/usr/lib/hadoop-mapreduce/hadoop-streaming.jar")

library(rmr2)

bp = rmr.options("backend.parameters")

trans <- list(D="mapreduce.map.java.opts=-Xmx400M",

D="mapreduce.reduce.java.opts=-Xmx400M",

D="mapreduce.map.memory.mb=4096",

D="mapreduce.reduce.memory.mb=4096",

D="mapreduce.task.io.sort.mb=100")

bp <- list(hadoop=trans)

#### 没有使用的代码 开始 #######################

bp$hadoop[1]="mapreduce.map.java.opts=-Xmx400M"

bp$hadoop[2]="mapreduce.reduce.java.opts=-Xmx400M"

bp$hadoop[3]="mapreduce.map.memory.mb=1024"

bp$hadoop[4]="mapreduce.reduce.memory.mb=2048"

bp$hadoop[5]="mapreduce.task.io.sort.mb=100"

#### 没有使用的代码 结束 #######################

rmr.options(backend.parameters = bp)

rmr.options("backend.parameters")

## map function

map <- function(k,lines) {

words.list <- strsplit(lines, '\\s')

words <- unlist(words.list)

return( keyval(words, 1) )

}

## reduce function

reduce <- function(word, counts) {

keyval(word, sum(counts))

}

wordcount <- function (input, output=NULL) {

mapreduce(input=input, output=output, input.format="text",

map=map, reduce=reduce)

}

## delete previous result if any

system("/usr/lib/hadoop/bin/hadoop fs -rm -r /tmp/zhengcong/out")

## Submit job

hdfs.root <- '/tmp/zhengcong'

hdfs.data <- file.path(hdfs.root, 'hp')

hdfs.out <- file.path(hdfs.root, 'out')

out <- wordcount(hdfs.data, hdfs.out)

## Fetch results from HDFS

results <- from.dfs(out)

## check top 30 frequent words

results.df <- as.data.frame(results, stringsAsFactors=F)

colnames(results.df) <- c('word', 'count')

head(results.df[order(results.df$count, decreasing=T), ], 30)

10、错误解决

rJava无法加载,root用户下运行 R CMD javareconf -e

添加 export LD_LIBRARY_PATH=$JAVA_HOME/lib/amd64:$JAVA_HOME/jre/lib/amd64/server

配置RHadoop与运行WordCount例子的更多相关文章

  1. (四)伪分布式下jdk1.6+Hadoop1.2.1+HBase0.94+Eclipse下运行wordCount例子

    本篇先介绍HBase在伪分布式环境下的安装方式,然后将MapReduce编程和HBase结合起来使用,完成WordCount这个例子. HBase在伪分布环境下安装 一.   前提条件 已经成功地安装 ...

  2. RedHat 安装Hadoop并运行wordcount例子

    1.安装 Red Hat 环境 2.安装JDK 3.下载hadoop2.8.0 http://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/had ...

  3. [Linux][Hadoop] 运行WordCount例子

    紧接上篇,完成Hadoop的安装并跑起来之后,是该运行相关例子的时候了,而最简单最直接的例子就是HelloWorld式的WordCount例子.   参照博客进行运行:http://xiejiangl ...

  4. CDH quick start VM 中运行wordcount例子

    需要注意的事情: 1. 对于wordcount1.0 ,按照http://www.cloudera.com/content/cloudera/en/documentation/HadoopTutori ...

  5. Hadoop2.8.2 运行wordcount

    1 例子jar位置 [hadoop@hadoop02 mapreduce]$ pwd /hadoop/hadoop-2.8.2/share/hadoop/mapreduce [hadoop@hadoo ...

  6. (二)Hadoop例子——运行example中的wordCount例子

    Hadoop例子——运行example中的wordCount例子 一.   需求说明 单词计数是最简单也是最能体现MapReduce思想的程序之一,可以称为 MapReduce版"Hello ...

  7. debian下 Hadoop 1.0.4 集群配置及运行WordCount

    说明:我用的是压缩包安装,不是安装包 官网安装说明:http://hadoop.apache.org/docs/r1.1.2/cluster_setup.html,繁冗,看的眼花...大部分人应该都不 ...

  8. (三)配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序

    配置Hadoop1.2.1+eclipse(Juno版)开发环境,并运行WordCount程序 一.   需求部分 在ubuntu上用Eclipse IDE进行hadoop相关的开发,需要在Eclip ...

  9. 【hadoop】看懂WordCount例子

    前言:今天刚开始看到map和reduce类里面的内容时,说实话一片迷茫,who are you?,最后实在没办法,上B站看别人的解说视频,再加上自己去网上查java的包的解释,终于把WordCount ...

随机推荐

  1. Resource is out of sync with the file system的解决办法

    在eclipse中,启动server时报此错,是因为文件系统不同步造成的,解决方法有两个: (1)选中工程,右键,选择F5(手动刷新): (2)Window->Preferences->G ...

  2. 【Spring】如何在单个Boot应用中配置多数据库?

    原创 BOOT 为什么需要多数据库? 默认情况下,Spring Boot使用的是单数据库配置(通过spring.datasource.*配置具体数据库连接信息).对于绝大多数Spring Boot应用 ...

  3. 将Ftp添加到资源管理器中直接使用

    在资源管理器中,右键,添加网络位置. 然后输入ftp的url ftp://server2008 使用匿名方式登录

  4. MySQL中REGEXP正则表达式使用大全

    REGEXP在mysql是用来执行正则表达式的一个函数 像php中的preg之类的函数了,regexp正则函数如果只是简单的查询使用like即可,但复杂的还是需要使用regexp了,下面我们来看看. ...

  5. 我的MYSQL学习心得

    我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据类型 我的MYSQL学习心得(五) 运 ...

  6. 1641. Duties

    1641 枚举 #include <iostream> #include<cstdio> #include<cstring> #include<algorit ...

  7. Hibernate映射集合属性

    Hibernate要求持久化集合属性字段必须声明为接口,实际的接口可以是java.util.Set,java.util.Collection,java.util.List,java.util.Map, ...

  8. SharePoint的安装配置

    安装环境 1. Window server 2008 r2(sp2) OS.2. MS SQL Server 2008 r2.3. Office2010.4. IIS7以上.5. 确认服务器已经加入域 ...

  9. BZOJ_1052_[HAOI2007]_覆盖问题_(二分+贪心)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1052 网格图,给出\(n\)个点,要求用3个边长相同的正方形覆盖所有点,求最小边长. 分析 显 ...

  10. 解决jQuery对表单serialize后出现的乱码问题

    通过看jQuery源码可以知道,serialize方法是通过encodeURIComponent编码的,所以解决乱码的最笨方法:  1.重新分解序列化后的值  2.把分解的值重新decodeURICo ...