http://poj.org/problem?id=3463

Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 6420   Accepted: 2270

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3
2

Hint

The first test case above corresponds to the picture in the problem description.

Source

 
【题解】:
求最短路与次短路,如果  最短路+1 == 次短路  ,输出 最短路与次短路的条数和 否则 输出 最短路的条数
  更新状态时:
1)新值小于最短路径长:更新最短路径长,计数;次短路径长,计数
2)新值等于最短路径长:更新最短路径计数
3)新值大于最短路径长,小于次短路径长:更新次短路径长,计数
4)新值等于次短路径长:更新次短路径计数
【注意】:不能用邻接矩阵存图,因为可能出现重复的路,应该用邻接链表
 
【code】:
 /**
Judge Status:Accepted Memory:1028K
Time:94MS Language:G++
Code Length:2335B Author:cj
*/ #include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector> using namespace std; #define N 1010
#define INF 1000000000 struct Nod
{
int v,w; //v 和 u->v 的权值 w
}nd; vector<Nod> G[N]; //邻接链表保存图 int dis[][N],visit[][N],cnt[][N];
int n; int Dijkstra(int u,int t)
{
int i,j;
for(i=;i<=n;i++)
{
dis[][i]=dis[][i]=INF; //各种初始化
}
memset(cnt,,sizeof(cnt));
memset(visit,,sizeof(visit));
dis[][u] = ;
cnt[][u] = ; //到达起点的最短路有一条本身
int flag = ;
for(i=;i<=*n;i++) //循环2*n次,每次求最短路 或者 次短路
{
int mins = INF;
for(j=;j<=n;j++)
{
if(!visit[][j]&&dis[][j]<mins) //每次找一个最小
{
flag = ;
u = j;
mins = dis[][j];
}
else if(!visit[][j]&&dis[][j]<mins) //每次找一个最小
{
u = j;
flag = ;
mins = dis[][j];
}
}
if(mins==INF) break; //没有找到最小就break掉
visit[flag][u] = ; //每次找一个最小
for(j=;j<G[u].size();j++)
{
int v = G[u][j].v;
int w = G[u][j].w;
if(dis[][v]>mins+w) //小于最短路
{
dis[][v] = dis[][v];
cnt[][v] = cnt[][v];
dis[][v] = mins + w;
cnt[][v] = cnt[flag][u];
}
else if(dis[][v]==mins+w) //等于最短路
{
cnt[][v]+=cnt[flag][u];
}
else if(dis[][v]>mins+w) //小于次短路
{
dis[][v] = mins+w;
cnt[][v] = cnt[flag][u];
}
else if(dis[][v]==mins+w) //等于次短路
{
cnt[][v]+=cnt[flag][u];
}
}
}
int num = cnt[][t];
if(dis[][t]+==dis[][t]) //如果次短路等于最短路加1
{
num+=cnt[][t];
}
return num;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int m;
scanf("%d%d",&n,&m);
int i,a,b,c;
for(i=;i<=n;i++)
{
G[i].clear();
}
for(i=;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
nd.v = b;
nd.w = c;
G[a].push_back(nd);
}
scanf("%d%d",&a,&b);
printf("%d\n",Dijkstra(a,b));
}
return ;
}

poj 3463 Sightseeing( 最短路与次短路)的更多相关文章

  1. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  2. poj 3463 Sightseeing——次短路计数

    题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...

  3. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  4. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  5. POJ 3463 Sightseeing (次短路)

    题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...

  6. POJ 3463 Sightseeing 题解

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  7. POJ 3463 Sightseeing (次短路经数)

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:10005   Accepted: 3523 Descr ...

  8. POJ 3463 Sightseeing

    最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...

  9. POJ 3463 有向图求次短路的长度及其方法数

    题目大意: 希望求出走出最短路的方法总数,如果次短路只比最短路小1,那也是可取的 输出总的方法数 这里n个点,每个点有最短和次短两种长度 这里采取的是dijkstra的思想,相当于我们可以不断找到更新 ...

随机推荐

  1. 【转】uvm 与 system verilog的理解

    http://www.cnblogs.com/loves6036/p/5779691.html 数字芯片和FPGA的验证.主要是其中的功能仿真和时序仿真. 验证中通常要搭建一个完整的测试平台和写所需要 ...

  2. Codevs 3729==洛谷P1941 飞扬的小鸟

    P1941 飞扬的小鸟 456通过 2.4K提交 题目提供者该用户不存在 标签动态规划2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 Flappy Bird 是一 ...

  3. 前端开发中的一些chrome插件推荐

    这篇博客推荐的都是谷歌chrome浏览器插件,理论上,与之相同内核的浏览器都能使用.由于是谷歌插件,所以在天朝的网络,你懂的! 红杏 专为 学者 .程序员.外贸工作者 打造的上网加速器.我们相信,上网 ...

  4. HttpClient(4.3.5) - HTTP Protocol Interceptors

    The HTTP protocol interceptor is a routine that implements a specific aspect of the HTTP protocol. U ...

  5. MongoDB - Installing MongoDB on Windows

    1. 在 http://www.mongodb.org/downloads 选择下载所需的版本. 2. 执行 msi 安装包,可通过 Custom 选项,选择安装目录. 3. 创建数据目录.Mongo ...

  6. kettle

    Kettle(中文名称叫水壶)是一款ETL工具,纯java编写,可以在Window.Linux.Unix上运行,绿色无需安装,数据抽取高效稳定.Kettle家族包括4个产品:Spoon.Pan.CHE ...

  7. 自定义DZLMoneyLabel

    一.简介 由于父亲生病,好久没有更新博客了,今天10.1 国庆(应该说是昨天了,已经过了12点了),心血来潮自定义了一个小label.这个控件的难度并不大,也没有什么可以值得炫耀的技术点.写这个控件的 ...

  8. 事件[event]_C#

    事件(event): 1.       事件是类在发生其关注的事情时用来提供通知的方式.例如,封装用户界面控件的类可以定义一个在单击该控件时发生的事件.控件类不关心单击按钮时发生了什么,但它需要告知派 ...

  9. 抽象类[abstract]_C#

    抽象类(abstract) abstract修饰符可以和类.方法.属性.索引器及事件一起使用.在类声明中使用abstract修饰符以指示某个类只能是其它类的基类.标记为抽象或包含在抽象类中的成员必须通 ...

  10. [译]使用Babel和Browserify创建你的ES6项目

    原文地址:Setting up an ES6 Project Using Babel and Browserify JavaScript的发展日新月异,ES6很快就要接管JS了.很多著名的框架像Ang ...