http://poj.org/problem?id=3463

Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 6420   Accepted: 2270

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3
2

Hint

The first test case above corresponds to the picture in the problem description.

Source

 
【题解】:
求最短路与次短路,如果  最短路+1 == 次短路  ,输出 最短路与次短路的条数和 否则 输出 最短路的条数
  更新状态时:
1)新值小于最短路径长:更新最短路径长,计数;次短路径长,计数
2)新值等于最短路径长:更新最短路径计数
3)新值大于最短路径长,小于次短路径长:更新次短路径长,计数
4)新值等于次短路径长:更新次短路径计数
【注意】:不能用邻接矩阵存图,因为可能出现重复的路,应该用邻接链表
 
【code】:
 /**
Judge Status:Accepted Memory:1028K
Time:94MS Language:G++
Code Length:2335B Author:cj
*/ #include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector> using namespace std; #define N 1010
#define INF 1000000000 struct Nod
{
int v,w; //v 和 u->v 的权值 w
}nd; vector<Nod> G[N]; //邻接链表保存图 int dis[][N],visit[][N],cnt[][N];
int n; int Dijkstra(int u,int t)
{
int i,j;
for(i=;i<=n;i++)
{
dis[][i]=dis[][i]=INF; //各种初始化
}
memset(cnt,,sizeof(cnt));
memset(visit,,sizeof(visit));
dis[][u] = ;
cnt[][u] = ; //到达起点的最短路有一条本身
int flag = ;
for(i=;i<=*n;i++) //循环2*n次,每次求最短路 或者 次短路
{
int mins = INF;
for(j=;j<=n;j++)
{
if(!visit[][j]&&dis[][j]<mins) //每次找一个最小
{
flag = ;
u = j;
mins = dis[][j];
}
else if(!visit[][j]&&dis[][j]<mins) //每次找一个最小
{
u = j;
flag = ;
mins = dis[][j];
}
}
if(mins==INF) break; //没有找到最小就break掉
visit[flag][u] = ; //每次找一个最小
for(j=;j<G[u].size();j++)
{
int v = G[u][j].v;
int w = G[u][j].w;
if(dis[][v]>mins+w) //小于最短路
{
dis[][v] = dis[][v];
cnt[][v] = cnt[][v];
dis[][v] = mins + w;
cnt[][v] = cnt[flag][u];
}
else if(dis[][v]==mins+w) //等于最短路
{
cnt[][v]+=cnt[flag][u];
}
else if(dis[][v]>mins+w) //小于次短路
{
dis[][v] = mins+w;
cnt[][v] = cnt[flag][u];
}
else if(dis[][v]==mins+w) //等于次短路
{
cnt[][v]+=cnt[flag][u];
}
}
}
int num = cnt[][t];
if(dis[][t]+==dis[][t]) //如果次短路等于最短路加1
{
num+=cnt[][t];
}
return num;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int m;
scanf("%d%d",&n,&m);
int i,a,b,c;
for(i=;i<=n;i++)
{
G[i].clear();
}
for(i=;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
nd.v = b;
nd.w = c;
G[a].push_back(nd);
}
scanf("%d%d",&a,&b);
printf("%d\n",Dijkstra(a,b));
}
return ;
}

poj 3463 Sightseeing( 最短路与次短路)的更多相关文章

  1. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  2. poj 3463 Sightseeing——次短路计数

    题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...

  3. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  4. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  5. POJ 3463 Sightseeing (次短路)

    题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...

  6. POJ 3463 Sightseeing 题解

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  7. POJ 3463 Sightseeing (次短路经数)

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:10005   Accepted: 3523 Descr ...

  8. POJ 3463 Sightseeing

    最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...

  9. POJ 3463 有向图求次短路的长度及其方法数

    题目大意: 希望求出走出最短路的方法总数,如果次短路只比最短路小1,那也是可取的 输出总的方法数 这里n个点,每个点有最短和次短两种长度 这里采取的是dijkstra的思想,相当于我们可以不断找到更新 ...

随机推荐

  1. Linux 内核配置和编译

    Linux 内核配置和编译 一.配置内核 (1). 为什么要配置内核 1. 硬件需求 2. 软件需求 选出需要的,去掉不要的 (2). 如何配置内核 1. make  config 基于文本模式的交互 ...

  2. Git CMD - push: Update remote refs along with associated objects

    命令格式 git push [--all | --mirror | --tags] [--follow-tags] [--atomic] [-n | --dry-run] [--receive-pac ...

  3. nginx限制ip请求次数 以及并发次数

    如何设置能限制某个IP某一时间段的访问次数是一个让人头疼的问题,特别面对恶意的ddos攻击的时候.其中CC攻击(Challenge Collapsar)是DDOS(分布式拒绝服务)的一种,也是一种常见 ...

  4. django 学习-6 定义模型--数据库的使用

    1.service mysqld start  首先数据库是可用的 2.rpm -qa |grep MySQL-python  这个包是存在的 3.vim settings 修改databases 加 ...

  5. React-Native的基本控件属性方法

    对React-Native的学习,从熟悉基本控件开始. View 属性方法 序号 名称 属性Or方法 类型 说明 1 accessibilityLabel 属性 string   2 accessib ...

  6. LINQ(隐式表达式、lambda 表达式)

    .NET 中一项突破性的创新是 LINQ(Language Integrated Query,语言集成查询),这组语言扩展让你能够不必离开舒适的 C# 语言执行查询. LINQ 定义了用于构建查询表达 ...

  7. (转)微软开放了.NET 4.5.1的源代码

    微软开放了.NET 4.5.1的源代码 .NET Reference Source发布了beta版,可以在线浏览.NET Framework 4.5.1的源代码,并且可以通过配置,在Visual St ...

  8. EFFECTIVE JAVA 第十一章 系列化

    EFFECTIVE  JAVA  第十一章  系列化(将一个对象编码成一个字节流) 74.谨慎地实现Serializable接口 *实现Serializable接口付出的代价就是大大降低了“改变这个类 ...

  9. Java 读写XML文件 API--org.dom4j

    om4j是一个Java的XML API,类似于jdom,用来读写XML文件的.dom4j是一个十分优秀的JavaXML API,具有性能优异.功能强大和极其易使用的特点,同时它也是一个开放源代码的软件 ...

  10. 【转】404、500、502等HTTP状态码介绍

    基本涵盖了所有问题HTTP 400 – 请求无效HTTP 401.1 – 未授权:登录失败HTTP 401.2 – 未授权:服务器配置问题导致登录失败HTTP 401.3 – ACL 禁止访问资源HT ...