Eight

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13956    Accepted Submission(s): 3957 Special Judge

Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4  5  6  7  8     5  6  7  8     5  6  7  8     5  6  7  8  9  x 10 12     9 10  x 12     9 10 11 12     9 10 11 12 13 14 11 15    13 14 11 15    13 14  x 15    13 14 15  x             r->            d->            r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three arrangement.

 
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1  2  3 x  4  6 7  5  8
is described by this list:
1 2 3 x 4 6 7 5 8
 
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
 
Sample Input
2 3 4 1 5 x 7 6 8
 
Sample Output
ullddrurdllurdruldr
 
 
 
这题活生生搞了五天,为此学了A*和康托展开,虽然自己写出来了但还不是非常明白,有句话说“如果你真的懂了那么你就应该自己动手做一个”,看来我还没真的懂。
首先把每次矩阵的格局存结构里,然后对整个矩阵用康托展开来进行哈希,得到一个值,以此来判断此种情况是否出现过或是是否到达了终点,有一个很好的剪枝就是用奇偶逆序数来判断是否可解,因为最终情况的逆序数是0,而每次变换不会改变逆序数的奇偶,所以如果初始情况的逆序数是奇数的话就不可解。
不明白的地方是A*的估值函数为何不用f = g + h,而是要用h和g分别作为两个参数来比较,刚开始的时候我把两个参数的位置弄反了, T了一天。都是泪。
 #include <iostream>
#include <cmath>
#include <string>
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int SIZE = ;
const int GOAL = ;
const int HASH[] = {,,,,,,,,};
const int UP_DATE[][] = {{,-},{,},{-,},{,}};
int PATH[];
int PRE[];
struct Node
{
int map[SIZE][SIZE];
int x,y;
int h,g;
int hash;
bool operator <(const Node a) const
{
return h != a.h ? h > a.h : g > a.g;
}
}; bool solve_able(const Node & r);
bool check(const int,const int);
void cal_hash(Node & r);
void cal_h(Node & r);
void search(const Node & r);
void show(void);
int main(void)
{
Node first;
char s[]; while(gets(s))
{
int k = ;
memset(PRE,-,sizeof(PRE));
memset(PATH,-,sizeof(PATH));
for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
if(s[k] >= '' && s[k] <= '')
first.map[i][j] = s[k] - '';
else if(s[k] == 'x')
{
first.map[i][j] = ;
first.x = i;
first.y = j;
}
else
j --;
k ++;
}
if(!solve_able(first))
{
printf("unsolvable\n");
continue;
}
cal_hash(first);
if(first.hash == GOAL)
{
puts("");
continue;
}
PATH[first.hash] = -;
first.g = ;
cal_h(first);
search(first);
} return ;
} bool solve_able(const Node & r)
{
int sum = ,count = ;
int temp[]; for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
temp[count] = r.map[i][j];
count ++;
}
for(int i = ;i < ;i ++)
for(int j = i + ;j < ;j ++)
if(temp[j] < temp[i] && temp[j] && temp[i])
sum ++;
return !(sum & );
} bool check(const int x,const int y)
{
if(x >= && x <= && y >= && y <= )
return true;
return false;
} void cal_hash(Node & r)
{
int sum = ,count = ,box;
int temp[]; for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
temp[count] = r.map[i][j];
count ++;
}
for(int i = ;i < ;i ++)
{
box = ;
for(int j = i + ;j < ;j ++)
if(temp[j] < temp[i])
box ++;
sum += (box * HASH[i]);
}
r.hash = sum;
} void search(Node const & r)
{
Node cur,next; priority_queue<Node> que;
que.push(r);
while(!que.empty())
{
cur = que.top();
que.pop();
for(int i = ;i < ;i ++)
{
next = cur;
next.x = cur.x + UP_DATE[i][];
next.y = cur.y + UP_DATE[i][];
if(!check(next.x,next.y))
continue;
swap(next.map[cur.x][cur.y],next.map[next.x][next.y]);
cal_hash(next); if(PATH[next.hash] == -)
{
PATH[next.hash] = i;
PRE[next.hash] = cur.hash;
next.g ++;
cal_h(next);
que.push(next);
}
if(next.hash == GOAL)
{
show();
return ;
}
}
} } void cal_h(Node & r)
{
int ans = ;
for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
if(r.map[i][j])
ans += abs(i - ((r.map[i][j] - ) / + )) + abs(j - ((r.map[i][j] - ) % + ));
r.h = ans;
} void show(void)
{
string ans;
int hash = GOAL; ans.clear();
while(PRE[hash] != -)
{
switch(PATH[hash])
{
case :ans += 'l';break;
case :ans += 'r';break;
case :ans += 'u';break;
case :ans += 'd';break;
}
hash = PRE[hash];
}
for(int i = ans.size() - ;i >= ;i --)
printf("%c",ans[i]);
cout << endl;
}

HDU 1043 Eight (A* + HASH + 康托展开)的更多相关文章

  1. HDU 1430 魔板(康托展开+BFS+预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  2. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. 双向广搜+hash+康托展开 codevs 1225 八数码难题

    codevs 1225 八数码难题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description Yours和zero在研究A*启 ...

  4. HDU 1043 八数码(A*搜索)

    在学习八数码A*搜索问题的时候须要知道下面几个点: Hash:利用康托展开进行hash 康托展开主要就是依据一个序列求这个序列是第几大的序列. A*搜索:这里的启示函数就用两点之间的曼哈顿距离进行计算 ...

  5. POJ 1077 && HDU 1043 Eight A*算法,bfs,康托展开,hash 难度:3

    http://poj.org/problem?id=1077 http://acm.hdu.edu.cn/showproblem.php?pid=1043 X=a[n]*(n-1)!+a[n-1]*( ...

  6. HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  7. HDU 1043 Eight(双向BFS+康托展开)

    http://acm.hdu.edu.cn/showproblem.php?pid=1043 题意:给出一个八数码,求出到达指定状态的路径. 思路:路径寻找问题.在这道题里用到的知识点挺多的.第一次用 ...

  8. HDU 1043 Eight(反向BFS+打表+康托展开)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 题目大意:传统八数码问题 解题思路:就是从“12345678x”这个终点状态开始反向BFS,将各 ...

  9. HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

随机推荐

  1. quotation

    1. 如果不能修心,则诸事繁杂!; 2. 人生,是该追求平淡长久,还是绚烂短暂,我想人人都有自己的答案,但阅历或者情感,都不是越多越好,烂桃三筐不如鲜杏一个,是古老的俗话,却至今鲜活有力.以量取胜,实 ...

  2. 最大连续子数组问题-homework-01

    1)先写我的 github 的介绍: github 的域名:http://www.github.com/zhuifeng1022 登入 github 大概是下面的视图: 按照助教的方法:我已经建好了代 ...

  3. Android实例-程序切换到后台及从后台切换到前台

    相关资料: http://www.delphitop.com/html/Android/2933.html 程序包下载: http://download.csdn.net/detail/zhujian ...

  4. 关于java的continue、break关键字用法

    一 明确两个概念 循环:是指按照规定次数重复执行某一操作的全过程:其关键语句有for. foreach.while.do while 迭代:是指循环过程中单次操作,1次循环由n次迭代构成 二 用法归纳 ...

  5. Java学习笔记(六):面向对象、接口和抽象类

    类和对象 Java是一门面向对象的语言,下面我们来了解一下Java中的面向对象. 方法和重载 Java中的方法格式如下: 访问修饰符 返回值类型 方法名(参数){ 方法主体 } Java的方法支持重载 ...

  6. C# 生成解决方案失败,点击项目重新生成报找不到命名空间

    1.点击生成解决方案失败,点击项目“重新生成”找不到“XXX”命名空间. 尝试点击"重新生成解决方案"多次,然后点击项目的"重新生成"即可解决.

  7. C++中void型指针

    问题由来: PX_FORCE_INLINE void* operator new(size_t size, const char* handle, const char * filename, int ...

  8. "file:///" file 协议

    [问题] 在WLW中拖入本地图片文件,然后调试过程中,选中对应图片,看到获得的对应的html源码中,图片地址是这样的: href="file:///C:/Users/CLi/AppData/ ...

  9. Mysql,JDBC封装

    1.完成对数据库的表的增删改的操作 2.查询返回单条记录 3.查询返回多行记录 4.可以使用反射机制来封装,查询单条记录 5.反射机制,查询多条记录 package myjdbc; import ja ...

  10. V​M​W​a​r​e​里​安​装​6​4​位​L​i​n​u​x​ ​的​方​法

    1.CPU AMD系列的CPU略过 Intel系列的CPU芯片需要支持EM64T和VT技术才行,并且BIOS也要支持才可以. 为了确定你的Intel CPU是否支持VT,请查看: http://com ...