Eight

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13956    Accepted Submission(s): 3957 Special Judge

Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

 1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4  5  6  7  8     5  6  7  8     5  6  7  8     5  6  7  8  9  x 10 12     9 10  x 12     9 10 11 12     9 10 11 12 13 14 11 15    13 14 11 15    13 14  x 15    13 14 15  x             r->            d->            r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three arrangement.

 
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1  2  3 x  4  6 7  5  8
is described by this list:
1 2 3 x 4 6 7 5 8
 
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
 
Sample Input
2 3 4 1 5 x 7 6 8
 
Sample Output
ullddrurdllurdruldr
 
 
 
这题活生生搞了五天,为此学了A*和康托展开,虽然自己写出来了但还不是非常明白,有句话说“如果你真的懂了那么你就应该自己动手做一个”,看来我还没真的懂。
首先把每次矩阵的格局存结构里,然后对整个矩阵用康托展开来进行哈希,得到一个值,以此来判断此种情况是否出现过或是是否到达了终点,有一个很好的剪枝就是用奇偶逆序数来判断是否可解,因为最终情况的逆序数是0,而每次变换不会改变逆序数的奇偶,所以如果初始情况的逆序数是奇数的话就不可解。
不明白的地方是A*的估值函数为何不用f = g + h,而是要用h和g分别作为两个参数来比较,刚开始的时候我把两个参数的位置弄反了, T了一天。都是泪。
 #include <iostream>
#include <cmath>
#include <string>
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int SIZE = ;
const int GOAL = ;
const int HASH[] = {,,,,,,,,};
const int UP_DATE[][] = {{,-},{,},{-,},{,}};
int PATH[];
int PRE[];
struct Node
{
int map[SIZE][SIZE];
int x,y;
int h,g;
int hash;
bool operator <(const Node a) const
{
return h != a.h ? h > a.h : g > a.g;
}
}; bool solve_able(const Node & r);
bool check(const int,const int);
void cal_hash(Node & r);
void cal_h(Node & r);
void search(const Node & r);
void show(void);
int main(void)
{
Node first;
char s[]; while(gets(s))
{
int k = ;
memset(PRE,-,sizeof(PRE));
memset(PATH,-,sizeof(PATH));
for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
if(s[k] >= '' && s[k] <= '')
first.map[i][j] = s[k] - '';
else if(s[k] == 'x')
{
first.map[i][j] = ;
first.x = i;
first.y = j;
}
else
j --;
k ++;
}
if(!solve_able(first))
{
printf("unsolvable\n");
continue;
}
cal_hash(first);
if(first.hash == GOAL)
{
puts("");
continue;
}
PATH[first.hash] = -;
first.g = ;
cal_h(first);
search(first);
} return ;
} bool solve_able(const Node & r)
{
int sum = ,count = ;
int temp[]; for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
temp[count] = r.map[i][j];
count ++;
}
for(int i = ;i < ;i ++)
for(int j = i + ;j < ;j ++)
if(temp[j] < temp[i] && temp[j] && temp[i])
sum ++;
return !(sum & );
} bool check(const int x,const int y)
{
if(x >= && x <= && y >= && y <= )
return true;
return false;
} void cal_hash(Node & r)
{
int sum = ,count = ,box;
int temp[]; for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
{
temp[count] = r.map[i][j];
count ++;
}
for(int i = ;i < ;i ++)
{
box = ;
for(int j = i + ;j < ;j ++)
if(temp[j] < temp[i])
box ++;
sum += (box * HASH[i]);
}
r.hash = sum;
} void search(Node const & r)
{
Node cur,next; priority_queue<Node> que;
que.push(r);
while(!que.empty())
{
cur = que.top();
que.pop();
for(int i = ;i < ;i ++)
{
next = cur;
next.x = cur.x + UP_DATE[i][];
next.y = cur.y + UP_DATE[i][];
if(!check(next.x,next.y))
continue;
swap(next.map[cur.x][cur.y],next.map[next.x][next.y]);
cal_hash(next); if(PATH[next.hash] == -)
{
PATH[next.hash] = i;
PRE[next.hash] = cur.hash;
next.g ++;
cal_h(next);
que.push(next);
}
if(next.hash == GOAL)
{
show();
return ;
}
}
} } void cal_h(Node & r)
{
int ans = ;
for(int i = ;i <= ;i ++)
for(int j = ;j <= ;j ++)
if(r.map[i][j])
ans += abs(i - ((r.map[i][j] - ) / + )) + abs(j - ((r.map[i][j] - ) % + ));
r.h = ans;
} void show(void)
{
string ans;
int hash = GOAL; ans.clear();
while(PRE[hash] != -)
{
switch(PATH[hash])
{
case :ans += 'l';break;
case :ans += 'r';break;
case :ans += 'u';break;
case :ans += 'd';break;
}
hash = PRE[hash];
}
for(int i = ans.size() - ;i >= ;i --)
printf("%c",ans[i]);
cout << endl;
}

HDU 1043 Eight (A* + HASH + 康托展开)的更多相关文章

  1. HDU 1430 魔板(康托展开+BFS+预处理)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  2. hdu.1430.魔板(bfs + 康托展开)

    魔板 Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submis ...

  3. 双向广搜+hash+康托展开 codevs 1225 八数码难题

    codevs 1225 八数码难题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description Yours和zero在研究A*启 ...

  4. HDU 1043 八数码(A*搜索)

    在学习八数码A*搜索问题的时候须要知道下面几个点: Hash:利用康托展开进行hash 康托展开主要就是依据一个序列求这个序列是第几大的序列. A*搜索:这里的启示函数就用两点之间的曼哈顿距离进行计算 ...

  5. POJ 1077 && HDU 1043 Eight A*算法,bfs,康托展开,hash 难度:3

    http://poj.org/problem?id=1077 http://acm.hdu.edu.cn/showproblem.php?pid=1043 X=a[n]*(n-1)!+a[n-1]*( ...

  6. HDU 1043 & POJ 1077 Eight(康托展开+BFS+预处理)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

  7. HDU 1043 Eight(双向BFS+康托展开)

    http://acm.hdu.edu.cn/showproblem.php?pid=1043 题意:给出一个八数码,求出到达指定状态的路径. 思路:路径寻找问题.在这道题里用到的知识点挺多的.第一次用 ...

  8. HDU 1043 Eight(反向BFS+打表+康托展开)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 题目大意:传统八数码问题 解题思路:就是从“12345678x”这个终点状态开始反向BFS,将各 ...

  9. HDU 1043 & POJ 1077 Eight(康托展开+BFS | IDA*)

    Eight Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30176   Accepted: 13119   Special ...

随机推荐

  1. SpringMVC 避免IE执行AJAX时,返回JSON出现下载文件

    <?xml version="1.0" encoding="UTF-8"?> <!-- SpringMVC配置文件 --> <be ...

  2. POJ 2236 Wireless Network (并查集)

    Wireless Network 题目链接: http://acm.hust.edu.cn/vjudge/contest/123393#problem/A Description An earthqu ...

  3. IMAQ Flatten Image to String VI的参数设置对比

    无压缩 jpeg压缩 无损二元包装 仅JPEG压缩时有效 平化类型(指定字符串中存储什么类型的数据)   None JPEG PACKED BINARY Quality Image Image and ...

  4. POj3268 Silver Cow Party

    http://poj.org/problem?id=3268 题目大意:求到x距离与从x返回和的最大值 从x点到各个点最短路好求,直接用Dijkstar,但从各个点到x点却不好求,只要把路向翻转过来也 ...

  5. Oracle-11g-R2(11.2.0.3.x)RAC Oracle Grid & Database 零宕机方式回滚 PSU(自动模式)

    回滚环境: 1.源库版本: Grid Infrastructure:11.2.0.3.15 Database:11.2.0.3.15 2.目标库版本: Grid Infrastructure:11.2 ...

  6. python函数介绍

    1.向函数传递信息 def greet_user(username): print('Hello,' + username.title() + '!') greet_user('jesse') 2.位 ...

  7. 函数定义从零开始学C++之从C到C++(一):const与#define、结构体对齐、函数重载name mangling、new/delete 等

    今天一直在学习函数定义之类的问题,下午正好有机会和大家共享一下. 一.bool 类型 逻辑型也称布尔型,其取值为true(逻辑真)和false(逻辑假),存储字节数在不同编译系统中可能有所不同,VC+ ...

  8. Codeforces Round #334 (Div. 2) C. Alternative Thinking 贪心

    C. Alternative Thinking Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/6 ...

  9. HDU 5512 Meeting 博弈论

    Meeting Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5512 ...

  10. zoj3672 Gao The Sequence

    原地踏步了半年,感觉一切都陌生了~ 题意:a[i]-一个任意的数,这个数要等于a[1]~a[i-1]每个数减去任意一个数,经过多次这样的变换到达目标b序列,能到达就yes不能到达距no. 一开始各种分 ...