网络流/二分图最小点权覆盖


  果然还是应该先看下胡伯涛的论文……

  orz proverbs

题意:

N个点M条边的有向图,给出如下两种操作。
删除点i的所有出边,代价是Ai。
删除点j的所有入边,代价是Bj。
求最后删除图中所有的边的最小代价。

其实就是二分图最小点权覆盖。

定义:从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。

题解:

拆点。n个点拆成2n个点(左右各n个,i与(i+n)对应,之间连容量INF的边),S和i连容量为Ai的边,(i+n)与T之间连容量为Bi的边,求最小割即可

这样做为什么对呢?

当一条边存在的条件就是网络中还存在从S到T的非满流边!

方案输出不多说。。

  汗……输出方案我WA了N次T_T,直接从S进行dfs,对于左边的点,如果走不到则表明 s->i 这条边被割掉了,对于右边的点,如果走的到则表明 i+n->t 这条边被割掉了,因为如果没割掉就直接从这个点走到t了……唉我一开始居然没想到

 Source Code
Problem: User: sdfzyhy
Memory: 848K Time: 79MS
Language: G++ Result: Accepted Source Code //BZOJ 2125
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define fore(i,x) for(int i=head[x];i;i=next[i])
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=,M=,INF=~0u>>;
typedef long long LL;
/******************tamplate*********************/ struct edge{
int from,to,v;
};
int n,m;
struct Net{
edge E[M];
int head[N],next[M],cnt;
void add(int x,int y,int z){
E[++cnt]=(edge){x,y,z};
next[cnt]=head[x]; head[x]=cnt;
E[++cnt]=(edge){y,x,};
next[cnt]=head[y]; head[y]=cnt;
}
int s,t,d[N],cur[N],Q[N];
void init(){
n=getint(); m=getint();
s=; t=n*+; cnt=;
int x,y;
F(i,,n){
x=getint();
add(i+n,t,x);
}
F(i,,n){
x=getint();
add(s,i,x);
}
F(i,,m){
x=getint(); y=getint();
add(x,y+n,INF);
}
}
bool mklevel(){
memset(d,-,sizeof d);
d[s]=;
int l=,r=-;
Q[++r]=s;
while(l<=r){
int x=Q[l++];
fore(i,x){
edge&e=E[i];
if (d[e.to]==- && e.v>){
d[e.to]=d[x]+;
Q[++r]=e.to;
}
}
}
return d[t]!=-;
}
int dfs(int x,int a){
if (x==t) return a;
int flow=;
for(int &i=cur[x];i && flow<a;i=next[i]){
edge&e=E[i];
if (!e.v || d[e.to]!=d[x]+) continue;
int f=dfs(e.to,min(a-flow,e.v));
if (f>){
flow+=f;
e.v-=f;
E[i^].v+=f;
}
}
if (!flow) d[x]=-;
return flow;
}
int Dinic(){
int flow=;
while(mklevel()){
F(i,s,t) cur[i]=head[i];
flow+=dfs(s,INF);
}
return flow;
}
bool vis[N];
void dfs1(int x){
if (vis[x]) return;
vis[x]=;
for(int i=head[x];i;i=next[i])
if (E[i].v) dfs1(E[i].to);
}
void solve(){
printf("%d\n",Dinic());
int num=;
memset(vis,,sizeof vis);
dfs1(s);
F(i,,n) num+=(!vis[i])+vis[i+n];
printf("%d\n",num);
F(i,,n){
if (!vis[i]) printf("%d -\n",i);
if (vis[i+n]) printf("%d +\n",i);
}
}
}G1; int main(){
#ifndef ONLINE_JUDGE
freopen("2125.in","r",stdin);
freopen("2125.out","w",stdout);
#endif
G1.init();
G1.solve();
return ;
}
Destroying The Graph
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 7511   Accepted: 2399   Special Judge

Description

Alice and Bob play the following game. First, Alice draws some directed graph with N vertices and M arcs. After that Bob tries to destroy it. In a move he may take any vertex of the graph and remove either all arcs incoming into this vertex, or all arcs outgoing from this vertex.
Alice assigns two costs to each vertex: Wi+ and Wi-. If Bob removes all arcs incoming into the i-th vertex he pays Wi+ dollars to Alice, and if he removes outgoing arcs he pays Wi- dollars.

Find out what minimal sum Bob needs to remove all arcs from the graph.

Input

Input
file describes the graph Alice has drawn. The first line of the input
file contains N and M (1 <= N <= 100, 1 <= M <= 5000). The
second line contains N integer numbers specifying Wi+. The third line defines Wi- in a similar way. All costs are positive and do not exceed 106
. Each of the following M lines contains two integers describing the
corresponding arc of the graph. Graph may contain loops and parallel
arcs.

Output

On
the first line of the output file print W --- the minimal sum Bob must
have to remove all arcs from the graph. On the second line print K ---
the number of moves Bob needs to do it. After that print K lines that
describe Bob's moves. Each line must first contain the number of the
vertex and then '+' or '-' character, separated by one space. Character
'+' means that Bob removes all arcs incoming into the specified vertex
and '-' that Bob removes all arcs outgoing from the specified vertex.

Sample Input

3 6
1 2 3
4 2 1
1 2
1 1
3 2
1 2
3 1
2 3

Sample Output

5
3
1 +
2 -
2 +

Source

Northeastern Europe 2003, Northern Subregion

[Submit]   [Go Back]   [Status]   [Discuss]

【POJ】【2125】Destroying the Graph的更多相关文章

  1. 【 POJ - 1204 Word Puzzles】(Trie+爆搜|AC自动机)

    Word Puzzles Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 10782 Accepted: 4076 Special ...

  2. 【POJ 1459 power network】

    不可以理解的是,测评站上的0ms是怎么搞出来的. 这一题在建立超级源点和超级汇点后就变得温和可爱了.其实它本身就温和可爱.对比了能够找到的题解: (1)艾德蒙·卡普算法(2)迪尼克算法(3)改进版艾德 ...

  3. 【POJ 2728 Desert King】

    Time Limit: 3000MSMemory Limit: 65536K Total Submissions: 27109Accepted: 7527 Description David the ...

  4. 【POJ 2976 Dropping tests】

    Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 13849Accepted: 4851 Description In a certa ...

  5. 【POJ 3080 Blue Jeans】

    Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 19026Accepted: 8466 Description The Genogr ...

  6. 【POJ各种模板汇总】(写在逆风省选前)(不断更新中)

    1.POJ1258 水水的prim……不过poj上硬是没过,wikioi上的原题却过了 #include<cstring> #include<algorithm> #inclu ...

  7. 【POJ 3669 Meteor Shower】简单BFS

    流星雨撞击地球(平面直角坐标第一象限),问到达安全地带的最少时间. 对于每颗流星雨i,在ti时刻撞击(xi,yi)点,同时导致(xi,yi)和上下左右相邻的点在ti以后的时刻(包括t)不能再经过(被封 ...

  8. 【POJ 2823 Sliding Window】 单调队列

    题目大意:给n个数,一个长度为k(k<n)的闭区间从0滑动到n,求滑动中区间的最大值序列和最小值序列. 最大值和最小值是类似的,在此以最大值为例分析. 数据结构要求:能保存最多k个元素,快速取得 ...

  9. 【POJ 2406 Power Strings】

    Time Limit: 3000MSMemory Limit: 65536K Description Given two strings a and b we define a*b to be the ...

随机推荐

  1. QA在网站建设中的作用

    在网站建设项目中,有一个团队负责产品测试并识别产品中的缺陷是很有意义的.问题在于,不应该只依赖这个团队来发现所有的缺陷,就像航空公司不能只依靠空乘人员确保飞机安全一样.这个观点的核心是一个简单的事实, ...

  2. Cocos2d-js中Chipmunk引擎

    我们先介绍轻量级的物理引擎——Chipmunk.Chipmunk物理引擎,由Howling Moon Software的Scott Lebcke开发,用纯C编写.Chipmunk的下载地址是http: ...

  3. (转)RabbitMQ消息队列(五):Routing 消息路由

    上篇文章中,我们构建了一个简单的日志系统.接下来,我们将丰富它:能够使用不同的severity来监听不同等级的log.比如我们希望只有error的log才保存到磁盘上. 1. Bindings绑定 上 ...

  4. floodfill算法解题示例

    Flood fill算法是从一个区域中提取若干个连通的点与其他相邻区域区分开(或分别染成不同颜色)的经典算法.因为其思路类似洪水从一个区域扩散到所有能到达的区域而得名.在GNU Go和扫雷中,Floo ...

  5. 编译内核模块出现error: negative width in bit-field 错误

    今天在写一个简单的内核测试模块的时候出现了一个挺奇怪的问题,网上查了一下也没人解决,自己试了好久终于解决了,所以分享出来供大家参考,先贴出源码: /************************** ...

  6. android的入门学习

    android 入门学习. 活动:就是一个包含应用程序的用户界面的窗口.目的就是与用户交互. 意图:就是能够将来自不同应用程序的不同活动无缝连接在一起工作的"胶水",确保这些任务执 ...

  7. OS X EI Capitan安装mcrypt

    OS X EI Capitan安装mcrypt   (我的博客原文:http://www.jmolboy.com/2015/12/01/mcrypt-extension-on-EI-Capitan/) ...

  8. 重拾C,一天一点点_5

    switch(表达式){    case 整型常量表达式:语句序列    case 整型常量表达式:语句序列    default:语句序列} while(表达式)    语句 for(表达式1; 表 ...

  9. Eclipse 代码提示功能设置。

    1.        解决实例化时自动补全不必要的单词问题 2.        以MyEclipse 6.5重新配图 鉴 于网上的批评之声甚大,我只想说明我的想法:这样的增强代码提示,最终是用来辅助我们 ...

  10. hdu 2256 Problem of Precision 构造整数 + 矩阵快速幂

    http://acm.hdu.edu.cn/showproblem.php?pid=2256 题意:给定 n    求解   ? 思路: , 令  , 那么 , 得: 得转移矩阵: 但是上面求出来的并 ...