Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 16456   Accepted: 5732

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES
 // spfa
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std; const int INF = 0x3f3f3f3f;
queue <int> que;
double rate[][];
double commission[][];
double dis[];
int n,m,s;
double v;
int inque[];
int map[][]; bool spfa()
{
while(!que.empty())
que.pop();
memset(inque,,sizeof(inque));
for(int i = ; i <= n; i++)
dis[i] = ;
dis[s] = v;
que.push(s);
inque[s] = ;
while(!que.empty())
{
int u = que.front();
que.pop();
inque[u] = ;
for(int i = ; i <= n; i++)
{
if(map[u][i] != INF && dis[i] < (dis[u]-commission[u][i])*rate[u][i])
{
dis[i] = (dis[u]-commission[u][i])*rate[u][i];
if(inque[i] == )
{
inque[i] = ;
que.push(i);
}
}
}
if(dis[s] > v) return true;//若松弛后dis[s] > v 说明有正环
}
return false;
}
int main()
{
int a,b;
while(~scanf("%d %d %d %lf",&n,&m,&s,&v))
{
memset(map,INF,sizeof(map));
for(int i = ; i <= m; i++)
{
scanf("%d %d",&a, &b);
scanf("%lf %lf %lf %lf",&rate[a][b],&commission[a][b],&rate[b][a],&commission[b][a]);
map[a][b] = ;
map[b][a] = ;
}
if(spfa())
printf("YES\n");
else printf("NO\n");
}
return ;
}
 //Bellman_ford

 #include<stdio.h>
#include<string.h>
struct node
{
int u,v;
double rate,comm;
}map[];
int vis[];
int n,m,s,cnt;
double v;
double dis[]; bool Bellman_ford()
{
memset(dis,,sizeof(dis));//dis[]初始化为0;
dis[s] = v;
int i,j,flag;
for(i = ;i <= n; i++)
{
flag = ;
for(j = ; j < cnt; j++)//松弛任意两点
{
if(dis[map[j].v] < (dis[map[j].u]-map[j].comm)*map[j].rate)
{
dis[map[j].v] = (dis[map[j].u]-map[j].comm)*map[j].rate;
flag = ;
}
}
if(flag == )
break;
}
if(i >= n+)//若松弛n次还可以松弛说明存在正环;
return true;
else return false;
}
int main()
{
int a,b;
double c,d,e,f;
while(~scanf("%d %d %d %lf",&n,&m,&s,&v))
{
cnt = ;
while(m--)
{
scanf("%d %d %lf %lf %lf %lf",&a,&b,&c,&d,&e,&f);
map[cnt++] = ((struct node){a,b,c,d});
map[cnt++] = ((struct node){b,a,e,f});
}
if(Bellman_ford())
printf("YES\n");
else printf("NO\n");
}
return ;
}

Currency Exchange(判断是否有正环)的更多相关文章

  1. POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】

    链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  2. poj1860 Currency Exchange(spfa判断是否存在正环)

    题意:有m个货币交换点,每个点只能有两种货币的互相交换,且要给佣金,给定一开始的货币类型和货币数量,问若干次交换后能否让钱增加. 思路:spfa求最长路,判断是否存在正环,如果存在则钱可以在环中一直增 ...

  3. POJ 1860 Currency Exchange (bellman-ford判负环)

    Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...

  4. Currency Exchange(SPFA判负环)

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  5. poj 1860 Currency Exchange (SPFA、正权回路 bellman-ford)

    链接:poj 1860 题意:给定n中货币.以及它们之间的税率.A货币转化为B货币的公式为 B=(V-Cab)*Rab,当中V为A的货币量, 求货币S通过若干此转换,再转换为原本的货币时是否会添加 分 ...

  6. hdu 1317 XYZZY【Bellheman_ford 判断正环小应用】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1317 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  7. HDU 1317(Floyd判断连通性+spfa判断正环)

    XYZZY Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  8. HDU 1317XYZZY spfa+判断正环+链式前向星(感觉不对,但能A)

    XYZZY Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  9. Currency Exchange POJ1860

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

随机推荐

  1. Business Analysis and Essential Competencies

    Requirements Classification Schema http://files.cnblogs.com/files/happlyonline/BABOK.pptx http://fil ...

  2. Cocos2d-X学习——Android移植,使用第三方库.so被删掉问题

    2014-05-26 导语:Cocos2dx在安卓上移植的时候,增加第三方库,却发现新加的so库被删掉了. 正文: 1.我的环境: cocos2d-x 2.2.3, ndk-r9 2.网上找了非常多, ...

  3. 谈论C++当然结果

    C++编程课程的考试已经结束.这是第一次OJCBT.摸着石头过河,考试没有给学生理解的说法.现在尘埃落定.一些交代. 先说大的成就的治疗原则.事实上,有很多的纠结. 按理说,合格的太,无法挂.但实际情 ...

  4. Meth | phpstorm invalid descendent file name

     Failed to collect files: Invalid descendent file name "codelog_ddz.\"(]))\",\').txt& ...

  5. WIN10FTP服务器搭建

    在WIN10上搭建FTP服务器 先建立两个文件夹,区分上传和下载,做测试 用 然后在管理--服务界面新建一个用户 用户目录下创建一个用户 因为服务应用程序里面没有IIS,所以我们打开控制面板里面的程序 ...

  6. HDU3853

    题意:给R*C的迷宫,起点为1,1 终点为R,C 且给定方格所走方向的概率,分别为原地,下边,右边,求到终点的期望. 思路:既然是求到终点的期望,那么DP代表期望,所以DP[i][j]=原地的概率*D ...

  7. My.Ioc 代码示例——谈一谈如何实现装饰器模式,兼谈如何扩展 My.Ioc

    装饰器模式体现了一种“组合优于继承”的思想.当我们要动态为对象增加新功能时,装饰器模式往往是我们的好帮手. 很多后期出现的 Ioc 容器都为装饰器模式提供了支持,比如说 Autofac.在 My.Io ...

  8. 什么是NSAssert?

    断言, 判断是否符合某个特定条件, 符合就继续运行程序, 反之就抛出异常, 后面为自定义错误提示, 也可以使用NSParameterAssert, 在调试上有着很大的方便 int a = 0; NSA ...

  9. sencha app build 到 Capturing theme image不执行

    解决sencha app build 到 Capturing theme image不执行 今天电脑重装系统,重新安装了sencha cmd,但是在打包时,到了 Capturing theme ima ...

  10. Java简介(1)

    起源 略. 组成 Java由四方面组成: 1.Java编程语言 2.Java文件格式 3.Java虚拟机(JVM) 4.Java应用程序接口(Java api) 体系 JavaSE , JavaEE, ...